河岸浸食災害に対する瀬戸内海の 潮汐の影響

井上 卓也1

1広島大学大学院 先進理工系科学研究科

広島県の三津大川では平成30年豪雨,令和3年豪雨時に河岸侵食が発生した.三津大川は山地 のすぐ近くに位置し,さらに潮位変動の大きい瀬戸内海に面しているため,地下水位と潮位変 動の両方の影響を受けやすい河川である.本研究では,河岸の粘着力および地下水位と河川水 位の水位差の影響を考慮した斜面安定性解析モデルを平面2次元河床変動モデルに導入した.ま た,開発したモデルを用いて,三津大川の河岸侵食要因の分析を行った.その結果,開発した モデルは三津大川の被災箇所を予測できること,地下水位と河川水位の水位差が大きくなりや すい湾曲内岸および干潮時は,流水のせん断力が小さくても,水位差の影響により河岸が崩落 する可能性を示せた.

キーワード:河岸侵食,地下水,粘着性,潮汐

1. はじめに

令和3年7月8日,活発化した梅雨前線の影響で中国 地方で発生した線状降水帯により,広島県を中心に記録 的な大雨となった.広島県の二級河川三津大川では,河 口から約400m付近において,河岸侵食による川沿いの 道路の崩落と越水による家屋の浸水被害が発生した(図 -1). 三津大川は山間部との距離が小さいことから, 雨が降ると地下水位が高くなりやすく,さらに潮位差の 大きい瀬戸内海に面していることから,潮位変動による 影響も受けやすいと考えられる.

地下水位が河岸侵食に及ぼす影響の研究として,常松 ら¹はメコン川河岸を対象に地中流の動きを不飽和流解 析によって把握し,河岸侵食に地中流の影響があること を示している.また,鈴木ら²は筑後川河口域において 非定常準三次元洪水流解析と河床変動解析を行った結果, 砂供給量は有明海の潮位変動に強く影響されることを報 告している.このように地下水位や潮位変動が河口付近 の地形変化に影響を及ぼすことは明らかであり,三津大 川の被災要因を分析するためには,地下水位と潮位変動 の両方を考慮できる河床変動解析モデルの開発が必要で ある.

地下水位や浸透流が河岸浸食に与える影響を考慮した 河床変動解析モデルとしては、音田ら³⁰の開発した表面 流と浸透流を同時解析できる3次元流体解析と河床変動 解析を組み合わせたモデル、竹村・福岡⁴⁰の開発した準 3次元流体解析とサクションの影響を考慮した斜面安定 解析を組み合わせたモデルが挙げられる.しかし、音田

図-1 令和3年7月洪水における三津大川被災状況

ら³は非粘着性材料を用いた実験を、竹村・福岡⁴は粘 着性の少ない石礫河川をそれぞれ対象としているため、 河岸が有する粘着性の影響を考慮していない.

本研究が対象とするような河口付近の河川の場合,氾 濫原にはかつての洪水で堆積した粘土,シルトが堆積し ており,河岸の持つ粘着性の影響を無視できるとは限ら ない.そこで,本研究では iRIC Nays2DH⁹に地下水位と 粘着性の影響を考慮した斜面安定性解析を組み込み,三 津大川で発生した河岸侵食要因の分析を行う.

2. 三津大川における令和3年7月洪水

三津大川は広島県東広島市安芸津を貫流する河川であり、流路延長4.95 km,流域面積25.3 km²の比較的小規模な河川である.研究対象区間の河床勾配は約0.005,河床材料の平均粒径は約13mmである.両岸にはコンクリート護岸が設置されており、高水敷はなく、河川に沿って設置された道路が堤内地盤高より約1mほど高く、堤防のような役割を果たしている.

図-2の上部は、三津大川近傍にある本郷観測所におけ る令和3年7月8日の降水量である。時間最大降水量は 平成30年豪雨の50.5 mmh(観測史上最大)に対し令和 3年豪雨は38.5 mmhと76%程度であるが、三日間降水量 は平成30年豪雨の426 mm/3dayに対し令和3年豪雨は220 mm/3dayと50%程度である。令和3年豪雨は平成30年豪 雨に比べ短期的な豪雨であったと言える。

図-2の下部は、三津大川三津地点における流量と三津 大川から最も近い潮位観測所である竹原の潮位である. ピーク流量観測時と満潮時がほぼ同時であり、流量と潮 位の時間変化が一致していることが分かる.

図-3 は令和 3 年洪水および平成 30 年洪水における河 岸被災箇所である. 令和 3 年洪水では新興橋および安永 橋の右岸付近で河岸被災が発生しており,平成 30 年洪 水では新興橋の左右岸で河岸被災が発生している. なお, 被災箇所は潮位の影響をうける背水区間と自流区間の境 界付近に位置する.

3. 斜面安定性解析モデルの簡易化と検証

ここでは、はじめにLangendoen & Simon[®]が提案した河 岸の粘着力、地下水位、河川水位の影響を考慮した斜面 安定性解析モデルを紹介し、次に彼らのモデルを簡易化 した本研究モデルを提案する.最後にFox et al.[®]が粘着性 材料を用いて実施した斜面崩落実験と比較することで両 モデルを検証する.

3.1 Langendoen & Simon のモデル

Langendoen & Simon⁶のモデルでは土塊を縦にスライス し、分割片を追加しながら安全率計算を行うことで、崩 落角と崩落位置に対する安全率を算出する(図-4). スライス重量W_iは以下の式で表される.

 $W_j = \gamma_s(\eta_j - \eta_{fj})dx + \gamma_w\lambda(\eta_{wj} - \eta_{fj})dx$ (1) ここで、 γ_s :土の乾燥単位体積荷重(= $\rho_s g(1 - \lambda)$)、 γ_w : 水の単位体積荷重($\rho_w g$)、 λ :空隙率、 η :地表面高さ、 η_f :すべり面高さ、 η_w :地下水面高さ、dx:スライス幅、 ρ_s は土の密度、 ρ_w は水の密度である、添え字のjはスラ イスしイスした分割辺の番号を表している.

図-3 三津大川の河岸被災箇所

各スライスにおける間隙水圧とその作用距離の積U_jは以下の式となる.

$$U_j = \gamma_w (\eta_{wj} - \eta_{fj}) L_j$$
(2)
ここで、 L_i :すべり面距離である.

、 スライス底面摩擦力 S_i は以下の式で表される.

$$S_j = \frac{1}{FS} \left(c' L_j + N_j \tan \phi - U_j \tan \phi_b \right)$$
(3)

ここで、 ϕ :土の内部摩擦角、 ϕ_b :サクションによる摩擦 力増加を表す角度、c':粘着力、 N_j はすべり面の法線方 向の力、FSは安全率である.

図-4 Langendoen & Simonの概念図

スライスにかかる鉛直方向の力のつり合いを考え,す べり面の法線方向の力*N*_iについて整理すると,

$$N_j = \frac{W_j - X_j + X_{j-1} - (c'L_j - U_j \tan \phi_b) \frac{\sin \beta}{FS}}{\cos \beta + \frac{\tan \phi \sin \beta}{FS}}$$
(4)

最後に、すべり面に沿った力のつり合いから安全率を 算出する. その際、 $\sum (E_j - E_{j-1}) = F_w$ 、 $\sum (X_j - X_{j-1}) = 0$ とする.

$$FS = \frac{\sum (c'L_j + N_j \tan \phi - U_j \tan \phi_b)}{\tan \beta \Sigma W_i - F_w \cos \beta}$$
(5)

ここで、F_wは土塊に作用する外部の力であり、河川側の水圧と考え、以下の式で表される.

$$F_w = 0.5\gamma_w(\eta_{wr}^2) \tag{6}$$

ここで、 η_{wr} は河川側の水位である.

3.2 本研究モデル

Langendoen & Simon⁶のモデルは土塊を分割片にスライ スし、崩落角度と崩落位置(加える分割片の数)の2つ を少しずつ変化させて繰り返し計算により安全率を求め る.このため、平面2次元河床変動モデルに組み込んだ 場合、計算負荷の増大が予想される.また、平面2次元 河床変動計算の場合、崩落位置は竹村・福岡⁴のモデル のように計算格子によって規定されてしまう.これを回 避するためには、移動する計算格子の導入もしくはサブ グリッドスケールのモデル化が必要となり計算が複雑に なる.そこで、本研究では土塊を一つの三角形土塊とみ なし安全率計算を行う.これにより崩落角だけの繰り返 しとなり、計算負荷を低減できる.

はじめに, 三角形土塊全体の重量Wを以下の式より 求める.

$$W = \frac{1}{2} \gamma_s \eta_b \Delta n + \frac{1}{2} \gamma_w \lambda \frac{\Delta n}{\eta_b} \eta_w^2 \tag{7}$$

ここで Δn :三角土塊上部の長さ $(=\eta_b/\tan\beta)$ である.

次に、式(2)を斜面法尻から地下水面と崩落斜面の交 点 (η_w / tan β) まで積分すると、以下の式で表される.

$$U = \left[\frac{\gamma_w}{\cos\beta} \left(\eta_{wr} x - \frac{1}{2} \tan\beta x^2\right)\right]_0^{x_1} + \left[\frac{\gamma_w}{\cos\beta} \left(\eta_w x - \frac{1}{2} \tan\beta x^2\right)\right]_{x_1}^{x_2}$$
(8)

図-5 Fox et al.⁷の実験ケース4における崩壊時の写真

ここで、 $x1 = 0.5(\eta_{wr} + \eta_w)/\tan\theta$, $x2 = \eta_w/\tan\beta$ であり、 θ は崩落する前の斜面の角度である.

最後に、すべり面に沿った力のつり合いから安全率を 算出する.

$$FS = \frac{c'L + W\cos\beta \tan\phi - U\tan\phi_b}{W\sin\beta - F_w\cos\beta}$$
(9)

3.3 Fox et al. の実験による検証

Fox et al.⁷は高さ 100 cm,幅 10 cm,長さ 100 cmの実験水路に高さ 35 cmの台形土塊を設置し、台形土塊の片側の水深を 30 cm に保つことで、徐々に土塊に水を浸透させ、土塊の崩落形状を観測した.実験は粘着性の異なる 2 種類の砂を用い、土塊の初期斜面角を変えて、7 ケース実施された.本研究では、崩壊過程の写真が掲載されているケース 4 (初期斜面角 60 度、土の単位体積重量 19 kN/m³、粘着力 0.25 kPa、内部摩擦角 35°)を用いて、Langendoen & Simon⁶のモデルおよび本研究で提案する簡易モデルの検証を行う.

図-5は Fox et al.⁷の実験ケース4において斜面崩落が発生した瞬間の写真である.初期斜面角は60°であったが,崩壊する前に浸透流によって法尻付近の土砂が侵食され,その後斜面の崩落が発生している.図中のオレンジ色の四角形は,Langendoen & Simon⁹のモデルで想定してる崩落形状(直線的なクラックと直線的な滑り面)に合わせ,崩落位置と崩落角度を表している.これによると崩落位置は法尻から約27 cm,崩落角は約38°であった.一方,図中の緑色は,本研究モデルが想定している三角形土塊をイメージしている.崩壊土塊量を合わせるために,面積をオレンジ色の四角形の面積と同じにすると,緑色の三角形の崩落角は約42°であった.

図-6(a)は Fox et al.⁷の実験ケース 4 の条件を用いて, Langendoen & Simon⁶のモデルおよび本研究モデルで計算 した安全率と崩落角度の関係である. なお, スライスの 幅は2.89 cm とし, ϕ_b は Langendoen & Simon⁶と同様に 17° として計算している. まず, Langendoen & Simon⁶のモデ ルの結果をみると,実験の崩落位置 27 cm に一番近い法 尻から 26 cm において,崩落角 35°以上で安全率が1を下 回っており,オレンジ色の四角形土塊が不安定であるこ とを示している. 次に,本研究モデルをみると,崩落角 39°以上で安全率が1を下回っており,緑色の三角形土塊

図-6 斜面安定計算モデルの検証

が不安定であることを示している.

一般的に ϕ_b は10°~20°の範囲と言われている⁷. そこ で、 ϕ_b を10°とした場合の解析結果を図-6(b)に示す. Langendoen & Simon[®]のモデルでは法尻から26 cmにおいて 崩落角38°で安全率が1となり、本研究モデルでは崩落角 42°で安全率が1となり、Fox et al.⁷の実験をよく再現でき ている.

Langendoen & Simon[®]のモデルと本研究モデルを比べる と、本研究モデルの方が崩落角がわずかに大きくなる. これは三角形土塊とすることで、土塊底部のすべり面が 長くなり(図-5 参照),その分の粘着力が多く働くため である.この点については、将来の研究事項としたい.

4. 斜面安定性解析を考慮した平面2次元河床変動

計算モデルの開発と三津大川における感度分析

4.1 モデル改良の概要

本研究では、平面 2 次元河床変動モデルである iRIC Nays2DH⁹に 3.2 章で示した簡易的な斜面安定性解析モデルを組み込む.各格子において、地下水位・河川水位・

粘着性を踏まえた斜面安定性解析を行い,安全率が1に なる崩落角を算出する.河床変動によって計算格子間の 斜面角が算出された崩落角を超えたとき,斜面角が崩落 角になるように河岸を崩壊させる.崩壊した土砂は隣接 する格子に堆積させる.

その他の点は iRIC Nays2DH⁹と同じであり,流況は平面2次元浅水流方程式で解析され,河床変動は Exner 方程式で算出される.流砂は単一粒径の掃流砂のみを考慮し,流砂量は芦田・道上の式より算出される.

4.2 計算条件

計算対象区間は図-3 に示すように被災箇所の約 200 m 上流から河口までである.計算格子のサイズはおよそ流 下方向2m×横断方向2mである.河床材料は令和3年洪 水後に被災箇所付近の河床から土砂を採取し,ふるい分 け試験を行い算出した平均粒径13mmを用いる.マニン グの粗度係数は,洪水ピーク時の計算水位が痕跡水位と 概ね一致した0.03を試行錯誤的に与えた.内部摩擦角お よび河岸粘着力については調査データが無かったため, Fox et al.⁷の実験と同じ35°と0.25 kPa を仮に与えた.

本研究において,地下水位の計算は行わずに流下方向 に一定勾配として与えた.

$$h_a(s) = -i_a L_u(s) + h_{au}$$
 (10)

ここで、 h_g は地下水位、sは計算格子の流下方向座標、 i_g は地下水位勾配、 L_u は上流端からの距離、 h_{gu} は上流 端における地下水位である。三津大川では越水による氾 濫が発生しており、堤内地盤は飽和状態に近かったと考 えられる。そこで、 i_g は右岸高水敷の平均勾配である $0.005, h_{gu}$ は4.6mとし、地下水位が堤内地盤高に近い状 況を想定した(図-7)。

ケース1は粘着力の有無が河岸侵食に与える影響を確認するために行った.ケース1-1は粘着力 c=0 kPa であり、ケース1-2は粘着力 c=0.25 kPa である.粘着力有無の違いが分かり易いように流量は50 m³/s,下流端水位は1.2mに固定し6時間の通水を行った.なお,流量50 m³/s

は図-2 に示す流量ハイドログラフの流量下降期(6時間)のおおよそ平均値であり、下流端水位1.2mは8日3時と15時に観測された干潮位のおおよそ平均値である.

ケース2は流量と潮位が河岸被災に与える影響を把握 することを目的に行った.ケース2-1は図-2に示す洪水 ピーク時(流量140 m³s,下流端水位3.0 m),ケース2-2は洪水減衰時(流量50 m³s,下流端水位2 m),ケー ス2-3は洪水終了時(流量20 m³s,下流端水位1.2 m), ケース2-4は流量が小さく潮位が高い場合(流量20 m³s, 下流端水位3.0 m)を与えた.通水時間は0.5時間とした. これはピーク流量140 m³sを長時間流すと越流した流れ によって堤内地が侵食され,河岸崩落なのか表面流によ る侵食なのかの判断が難しくなるためである.

4.3 粘着力の影響の感度分析結果

図-8に本研究モデルにおいて粘着力を考慮していない ケース 1-1 と考慮したケース 1-2 の河床変動高の計算結 果を示す. なお,河岸侵食の多かった新興橋付近を拡大 して示している.これによると粘着力を考慮したケース 1-2 のほうが,いずれの時間においても河岸侵食が小さ くなっており,平面 2次元河床変動モデルに組み込んだ 斜面安定性解析モデルが想定通りに動作していることが 確認できる.

図-8(b)において河岸侵食量が多いのは、新興橋の左右 岸と安永橋の右岸、児童公園の左岸である.このうち、 新興橋の左右岸、安永橋の右岸は、令和3年洪水時もし くは平成30年洪水時に被災実績のある個所である.こ のことから、改良した平面2次元河床変動モデルは被災 箇所を概ね予測できていると考える.

児童公園の左岸において,計算では河岸侵食が発生し ているが被災実績が無い要因として,三津大川は両岸に 護岸が設置されており,当該箇所の護岸の状態が良かっ た可能性などが考えられる.児童公園の左岸は,近年の 被害実績は無いものの潜在的なリスクを持っていると考 えられ,今後注視が必要である.

緩やかな湾曲の外岸に位置する児童公園の左岸,新興 橋と安永橋の右岸において河岸侵食が発生する要因は, 湾曲の外岸部に位置しするため,内岸側の土砂堆積・砂 州の発達に伴い,流れが外岸側へ集中し河岸近傍流速お よび河床せん断応力が大きいことが要因として考えられ る.このことは土砂堆積が大きくなる通水3時間目以降 に河岸侵食が大きく進行していることからも伺える.

一方、流水のせん断力が小さい湾曲の内岸側に位置する新興橋の左岸において河岸侵食が発生した理由は、地下水位と河川水位の差による影響と考えられる.湾曲部内岸では遠心力の影響により河川水位が低下する.この結果、式(9)の分母にある河川側の水圧を表すFwが小さくなり、斜面崩落が発生しやすくなった考えられる.このことは、砂州が発達がする前の通水1.5時間目をみると、新興橋の左岸の方が新興橋の右岸よりも河岸侵食量

図-8 ケース1の河床変動高, (a) ケース1-1: 粘着力 c=0 kPa, (b) ケース1-2: 粘着力 c=0.25 kPa

が大きいことからも伺える.

4.3 流量と潮位の影響の感度分析結果

図-9 に流量および流端水位を実績の流量ハイドロと 潮位変動に基づいて設定したケース2の河床変動高を示 す.計算前は洪水ピーク時は潮位が高いため、背水の影 響を受け河岸侵食が発生しづらいと想定したが、潮位が 高くても流量ピーク時に河岸侵食量は最大となった(図-

9(a)). これは流量が高いとき,背水区間と自流区間の 境界は下流側へ移行し,新興橋付近は自流区間になるた めである.

流量が20m³sの時(図-9(b))に着目すると,新興橋付近 において河岸浸食が発生している.これは流量低下に伴 い潮位も下がっていたため,河川水位と地下水位の差が 大きくなり河岸侵食が発生しやすくなっていたためと推 測される.このことは流量が小さく,潮位が高い場合の ケース 2-4 において,河岸侵食量が減少していることか らも伺える.

以上のことから,流量低下と潮位低下の一致すること で,高流量時は流水のせん断力による河岸侵食,低流量 時は河川水位と地下水位の水位差による河岸崩落が生じ やすく,新興橋付近の河岸は長時間にわたり危険な状態 にさらされていたと推測される.

5. まとめ

本研究では平面 2 次元河床変動モデル iRIC Nays2DH⁹ に地下水位と粘着性の影響を考慮した斜面安定性解析を 導入した.また,開発したモデルを用いて広島県の二級 河川三津大川を対象に洪水時の河岸侵食要因について分 析を行った.得られた知見について以下に列記する.

- 1) Langendoen & Simon⁶の斜面安定性解析モデルおよび それを簡易化した本研究の斜面安定性解析モデルの 両方とも Fox et al.⁷の実験を精度よく再現することが できた.
- 2) 平面2次元河床変動モデルiRIC Nays2DH⁹に上述の簡易的な斜面安定性解析モデルを組み込み、三津大川を対象に感度分析を行った結果、粘着力を考慮した方が考慮していない場合に比べ河岸侵食が発生しづらいことを確認した。
- 3) 流水による河床せん断応力が小さくても、地下水位 と河川水位の水位差が大きくなりやすい湾曲内岸お よび干潮時は、水位差の影響により河岸が崩落する 可能性を示せた。

なお、本研究では地下水位を一定勾配で与え、時間的 な変化を考慮していない.また、安息角や粘着力も観測 値を用いていない.今後は浸透流解析モデルを組み込む とともに、安息角や粘着力を調べた上で、粘着性河岸の 侵食実験を行い、モデルの妥当性を定量的に検証する予 定である.

参考文献

- 常松直志,風間聡,沢本正樹,仙頭紀明:河岸浸食 における地中水流動の影響,水工学論文集,Vol.48, pp.1093-1098,2004.
- 鈴木健太,島本尚徳,久保世紀,福岡捷二:筑後川 感潮域の洪水中の河床変動解析,土木学会論文集 B1(水工学), Vol.67, No.4, pp.I 877-I 882, 2011.
- 3) 音田慎一郎,安庭正晴,細田尚:河岸侵食を伴う流路 変動過程に関する3次元数値モデルの適用性につい て、土木学会論文集 B1(水工学), Vol.76, No.2, pp.
- 竹村吉晴,福岡捷二:扇状地河川の河岸侵食プロセスの解析法と常願寺川現地実験への適用,土木学会論 文集 B1(水工学), Vol.77 巻, No. 2, pp. I_799-I_804, 2021.
- Shimizu, Y., Nelson, J., Arnez Ferrel, K., Asahi, K., Giri, S., Inoue, T. et al. : Advances in computational morphodynamics using the International River Interface Cooperative (iRIC) software. Earth Surf. Process. Landforms, Vol. 45, pp. 11–37, 2020.
- Langendoen, E.J. and Simon, A.: Modeling the Evolution of Incised Streams. II:Streambank Erosion, J. Hydraul. Eng., Vol. 134, No. 7, pp. 905-915, , 2008.
- Fox, G.A., Librada, M, Glenn, CA, Wilson, V.: Erosion of Noncohesive Sediment by Ground Water Seepage: Lysimeter Experiments and Stability Modeling, Soil Sci. Soc. Am. J., Vol.71, pp. 1822-1830, 2007.