一般国道2号 岩国・大竹道路 トンネル技術検討委員会

一第1回一

3	地質調査等の結果整理・	証価
\circ	心見心且すり心不定は、	птіші

(1)	地質調査概要	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	_
-----	--------	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

(2) 水文調査概要 • • • • • • • • • • • 19

(1) 地質調査概要

1. 地質調査の内容

1.1 今回調査

今回実施した地質調査(平成31年3月から現地着手)の内容を表-1.1、-1.2に示す。

また地下水位の変動観測として、ボーリング孔5孔およびラムサウンディング試験孔1孔を地下水観測孔として使用した。

	項目		内訳	目的
ボ	ーリング	9箇所	(掘削延長462m)	コアの採取と地盤の評価
	標準貫入試験	5箇所	(計69回)	地盤の締まり程度の把握
	孔内水平載荷試験	5箇所	(計43回)	地盤の変形特性の把握
原位置試験	透水試験	2箇所	(計9回)	地盤の透水性の把握
床位直式級	湧水圧試験	5箇所 (計26回)		地盤の透水性の把握
	速度検層	5箇所	(計5回)	地盤の速度分布(地盤構造)の推定
	密度検層	2箇所	(計2回)	地盤の密度の把握
ラムサウ	ンディング試験	8箇所		盛土層の分布、層厚の確認
微動	微動アレイ探査			地盤の速度分布(地盤構造)の推定
弾化	性波探査	1測線	(測線延長480m)	地盤の速度分布(地盤構造)の推定

表-1.1 今回地質調査項目と目的(現地調査)

表-1.2 今回地質調査項目と目的(室内岩石・土質試験)

	項目	内訳	目的
室	岩石の密度試験	6箇所 (計76回)	岩盤の密度の把握
内	岩石の一軸圧縮試験	6箇所 (計65回)	岩盤の圧縮強度の把握
岩石	岩石の引張強さ試験	6箇所 (計65回)	岩盤の引張り強度の把握
試	岩石の超音波速度試験	6箇所 (計65回)	岩盤の超音波速度(P波、S波)の把握
験	顕微鏡観察	4箇所 (計15回)	岩石組織の状態の把握
	土粒子の密度試験	2箇所 (計8回)	土粒子の比重の把握
室内	土の湿潤密度試験	2箇所 (計9回)	土の湿潤密度、乾燥密度の把握
±	土の含水比試験	2箇所 (計8回)	土の含水比の把握
質 試	土の粒度試験	2箇所 (計8回)	土の粒度分布の把握
験	土の段階載荷による圧密試験	2箇所 (計8回)	土の圧密特性の把握
	土の圧密排水(CD)三軸圧縮試験	2箇所 (計8回)	土の強度特性(c、φ)の把握

1.2 既往調査

原位置試験

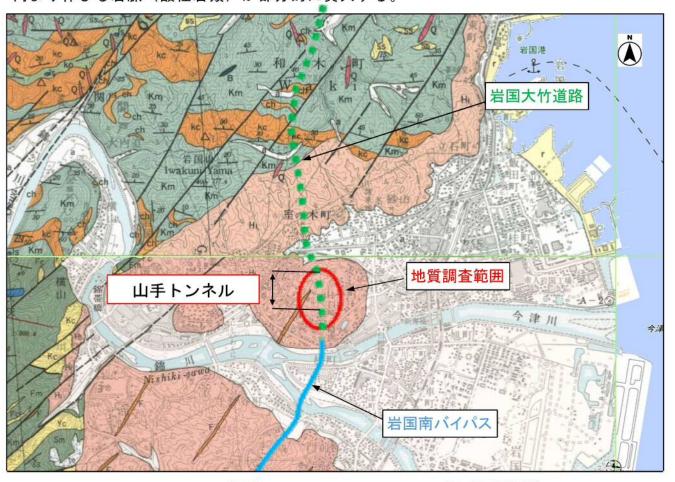
既往調査として平成12年度と14年度でトンネル坑口付近において地質調査を実施している。調査内容を表-1.3、-1.4に示す。

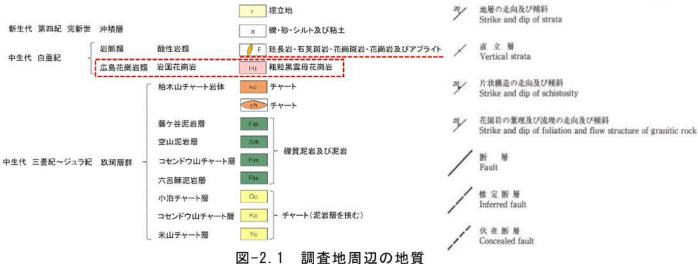
項目 目的				目的
ボーリング		5箇所	(掘削延長147m)	コアの採取と地盤の評価
	標準貫入試験	5箇所	(計37回)	地盤の締まり程度の把握
験	孔内水平載荷試験	1箇所	(計2回)	地盤の変形特性の把握
,為天	湧水圧試験	1箇所	(計1回)	地盤の透水性の把握
	速度検層	1箇所	(計1回)	地盤の速度分布(地盤構造)の推定

地盤の速度分布(地盤構造)の推定

表-1.3 既往地質調査項目と目的(現地調査)

表-1.4 既往地質調査項目と目的(室内岩石・土質試験)


2測線 (延長280m)


	項目	内訳	目的
室内岩	岩石の一軸圧縮試験	3箇所 (計6回)	岩盤の圧縮強度の把握
石試験	岩石の超音波速度試験	3箇所 (計6回)	岩盤の超音波速度(P波、S波)の把握
室内	土粒子の密度試験	1箇所 (計2回)	土粒子の比重の把握
土質	土の含水比試験	1箇所 (計2回)	土の含水比の把握
試験	土の粒度試験	1箇所 (計2回)	土の粒度分布の把握

2. 地形•地質概要

岩国市は山口県の東端に位置しており、南北に延びる形で北は中国山地、南は瀬 戸内海に接する。調査地は岩国市の南西端付近に位置する市街地にあたる。

調査地周辺の地形は、岩国市を南東方向へ流下する錦川の河口に発達した三角洲低地とその低地を三方から取り囲む頂部標高300m程度までの低山性山地からなる。調査範囲は、図-2.1に示すとおり、三角洲内に突出する島状山地とそれに接する三角洲低地(沖積低地面)に位置する。地質は広島花崗岩類(岩国花崗岩)の分布域にあたり、岩相は粗粒黒雲母花崗岩を主体とする。また、調査地の西側には南西方向より伸びる岩脈(酸性岩類)が部分的に貫入する。

1/5万地質図幅(大竹・岩国:産業技術総合研究所地質図NAVIに追記)

2.1 リニアメント詳細判読結果

調査地周辺におけるリニアメントの有無について地形判読を行った。判読結果を図-2.2に示す。

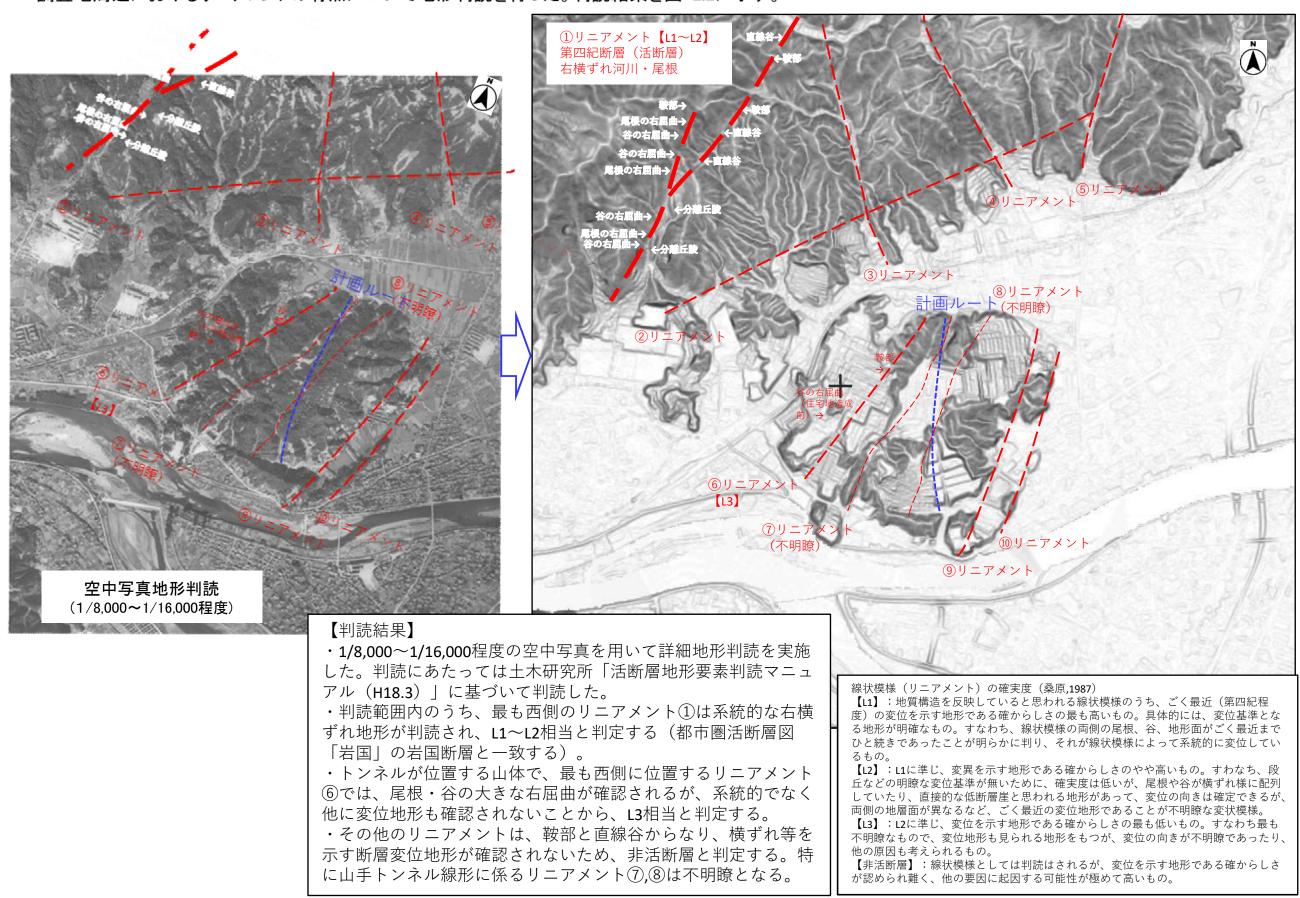
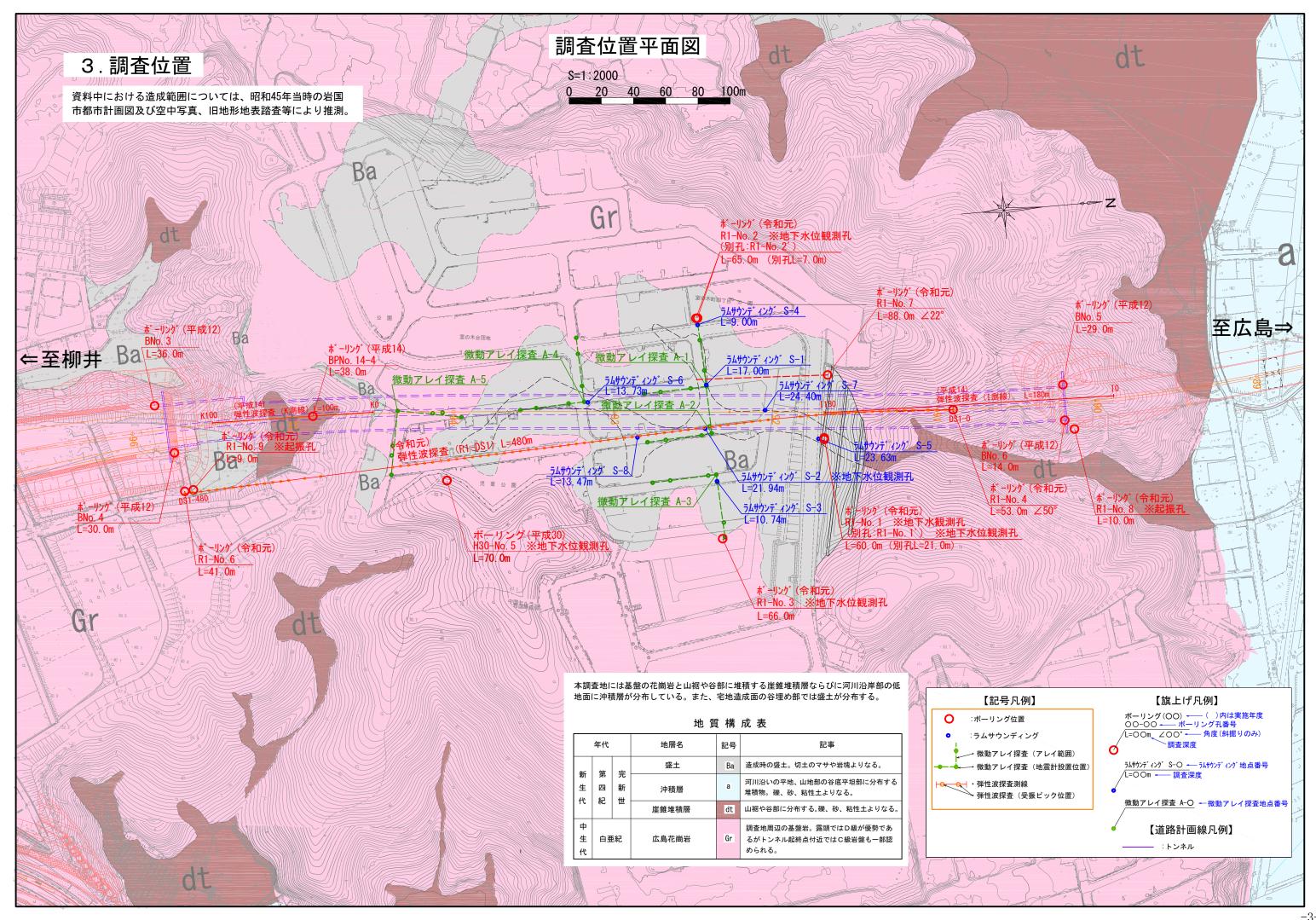



図-2.2 リニアメント地形判読図

国土地理院HP傾斜量図に、室の木団地開発前の空中写真(1/8,000~1/16,000程度)を用いて地形判読を実施した結果を投影使用空中写真 USA-M144-A-4-42, USA-M144-A-4-43, MCG627-C18-10, MCG627-C18-11, USA-R527-1-35, USA-R527-1-36

4. 地質調査の目的と妥当性

可能。(浸透流解析精度
能。(浸透流解析精度向
青度向上)
請度向上)
請度向上)
川用 。
確認が可能。
確認が可能。
「可能。
「可能。
が可能。
「可能。
の確認が可能。
ブレーションが可能。 と(浸透流解析精度向
る。また、弾性波探査との
向上。 離が遠くなり探査精度が 可能。

青文字:地下水位観測孔仕上げ箇所

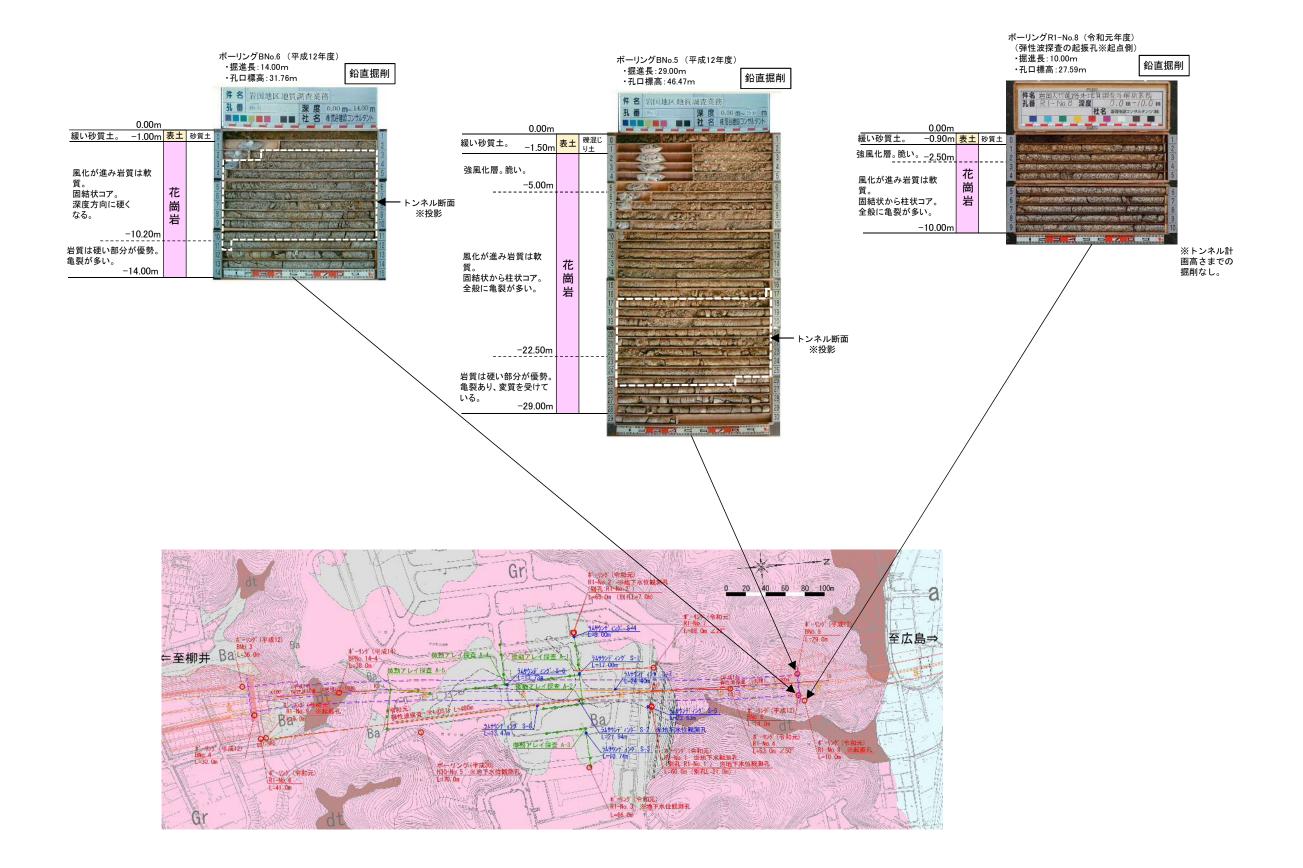


図-5.1 ボーリングコア写真 (R1-No. 8, BNo. 5, BNo. 6)

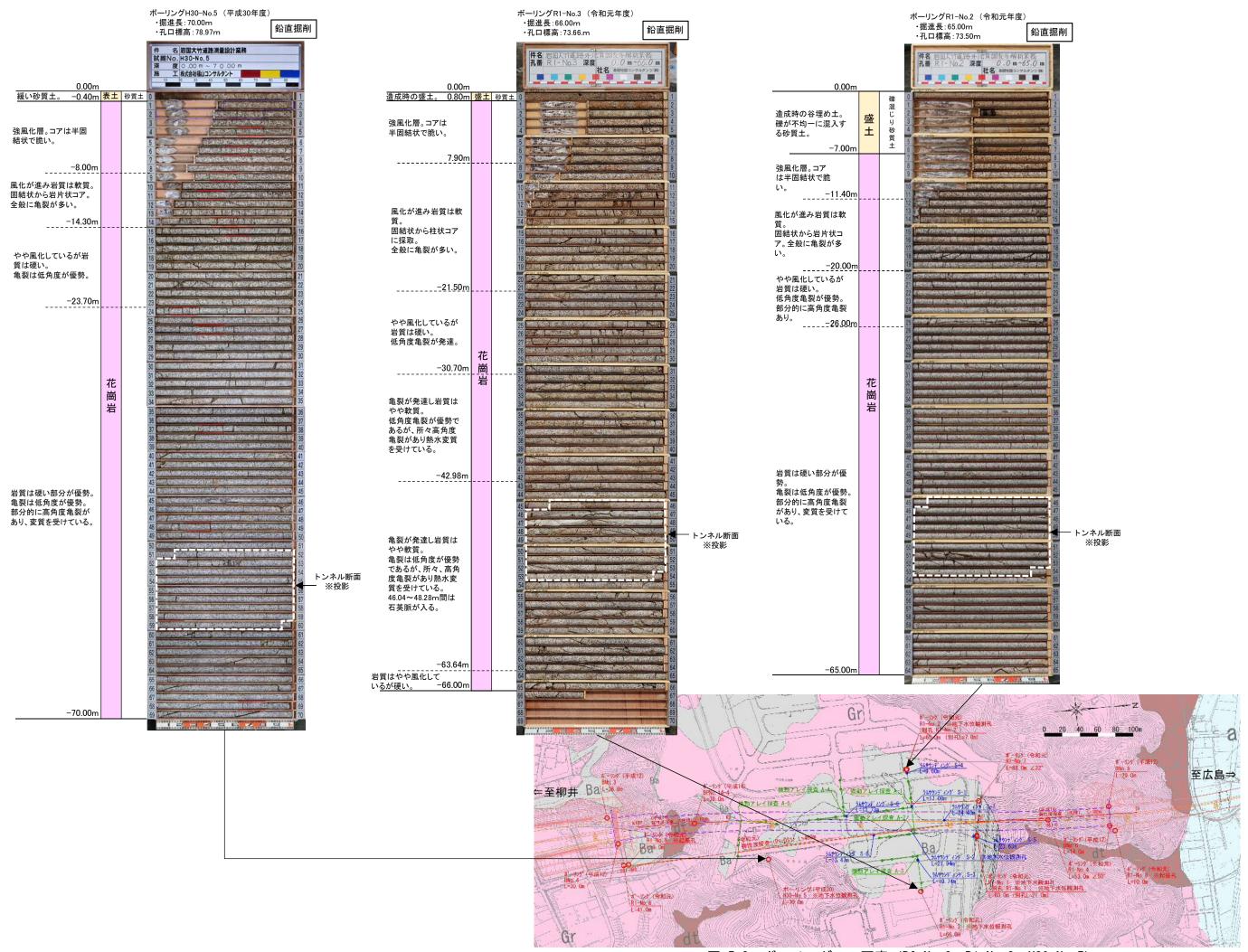


図-5.3 ボーリングコア写真 (RI-No.2, R1-No.3, H30-No.5)

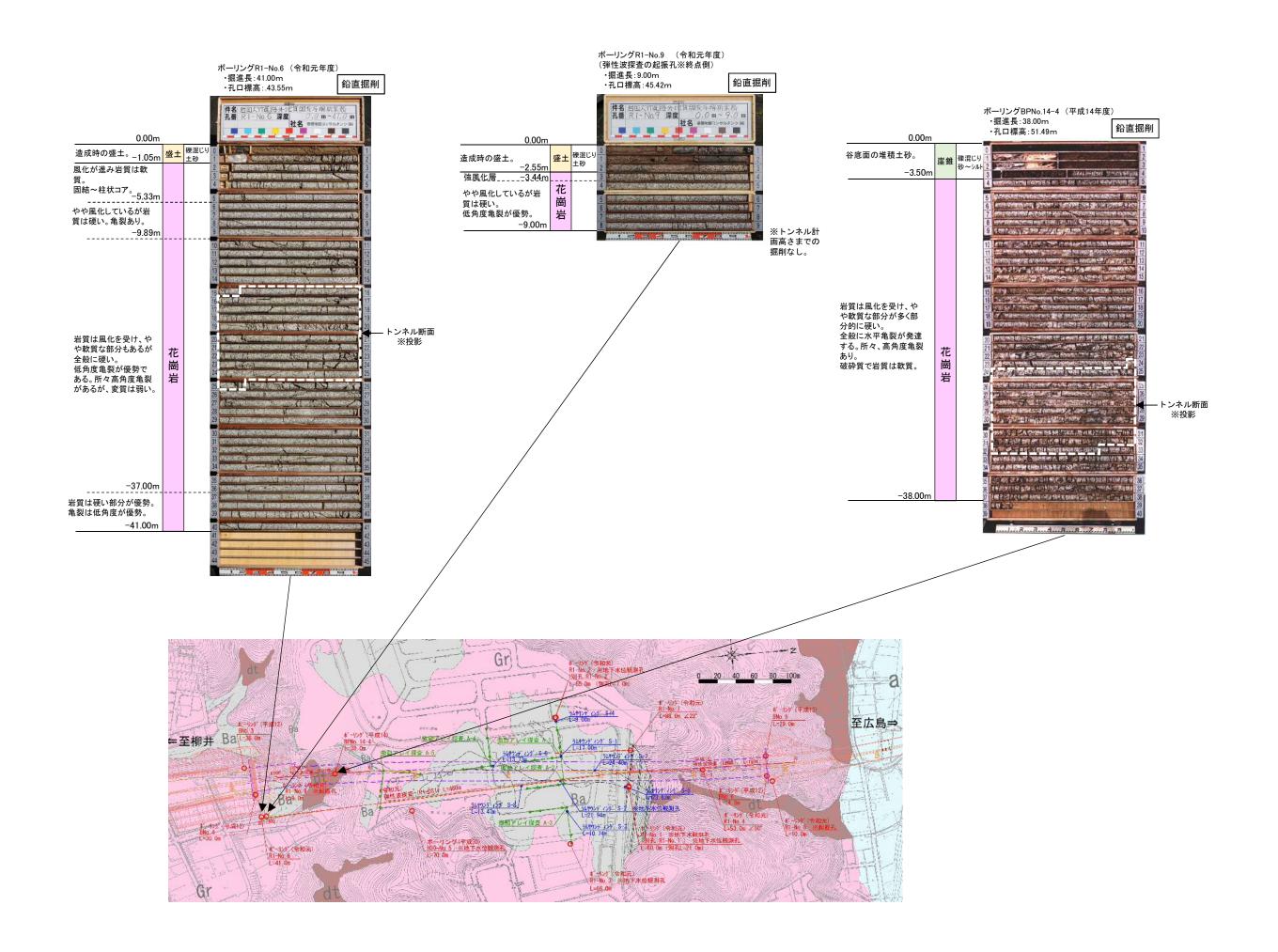


図-5.4 ボーリングコア写真 (BPNo.14-4、R1-No.9、R1-No.6)

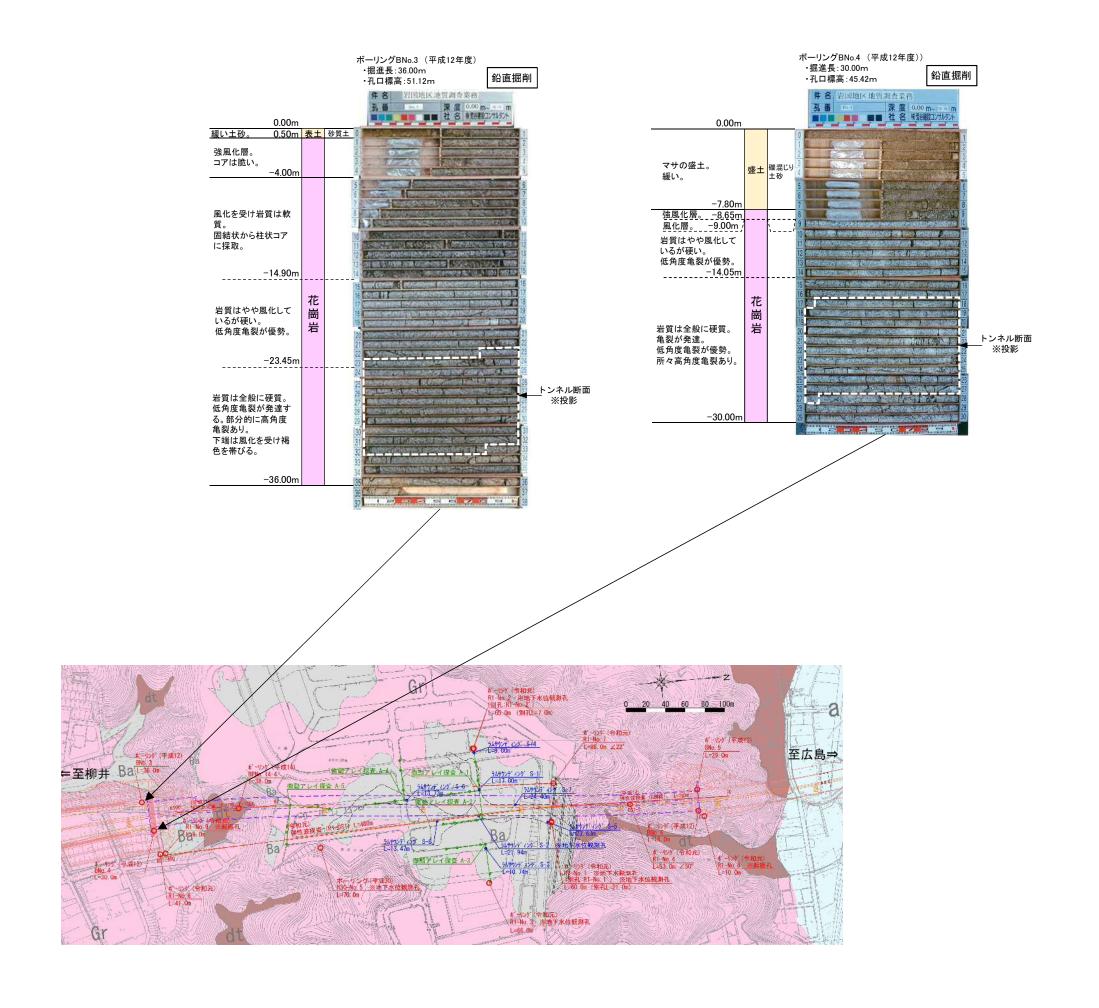


図-5.5 ボーリングコア写真 (BNo.4、BNo.3)

6. ボーリングとラムサウンディング試験の結果について(地山境界)

本調査では地山と盛土の境界の把握を目的としてラムサウンディング試験を実施した。

ラムサウンディングS-5とS-4の地山境界について、近接のボーリング(R1-No.1、R1-No.2)での地山境界と比較した結果、図-6.2に示すようにラムサウンディング試験での 打ち込みが困難となる付近(Nd値40程度以上)が概ね地山の境界と判断され、ボーリングで確認された地山境界と整合のある結果であった。ラムサウンディング試験により、 盛土と地山との境界の確認は行えており、ラムサウンディング結果は地質断面図作成の際の補完データとして使用する。

また、ラムサウンディング試験のNd値と標準貫入試験のN値には≒の相関があるとされているが、上記2箇所の近接実施箇所については図-6.1に示すように相関係数が 0.282、0.249といずれも低い相関であった。原因としては、盛土が礫、玉石を不均一に混入する不均質な地盤であることから、試験実施位置のズレ(R1-No.1とS-5で約3.6m、R1-No.2とS-4で約4.2m離れている)による影響が生じたものと考えられる。

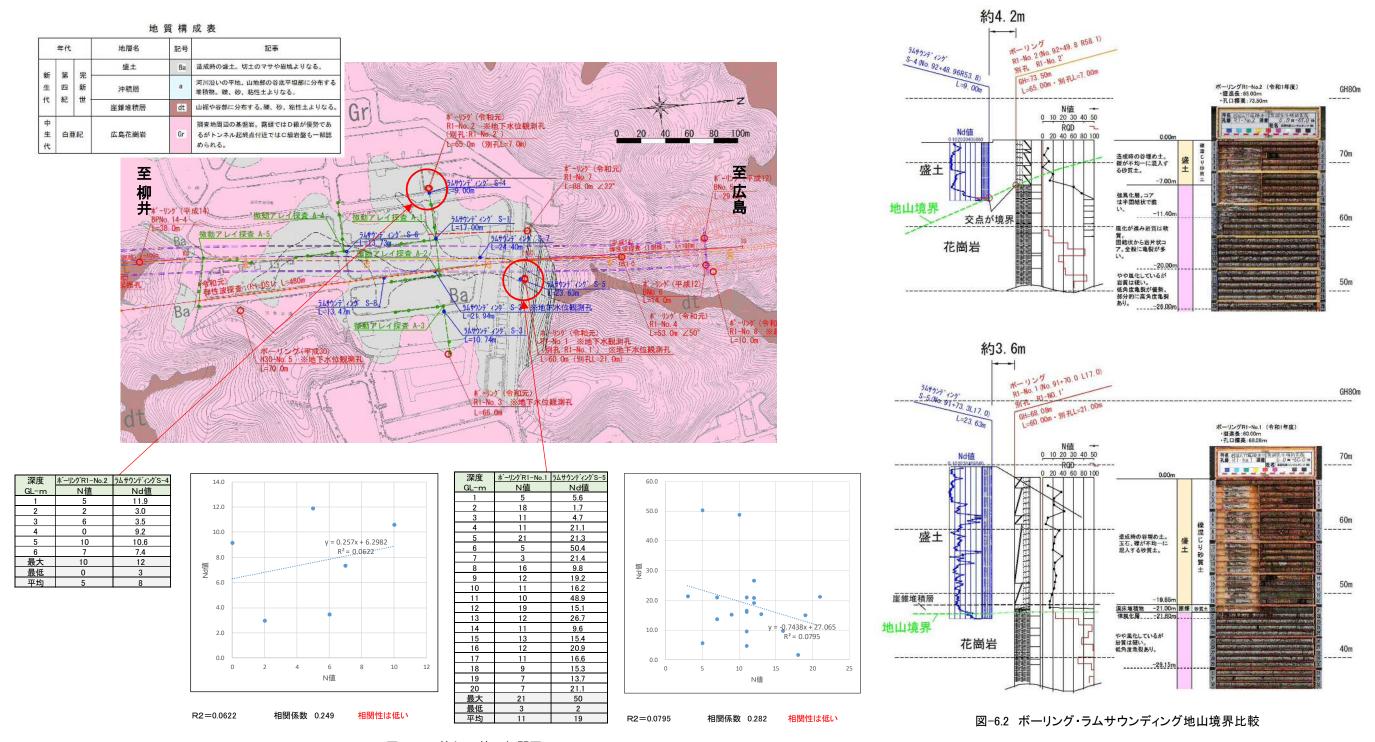
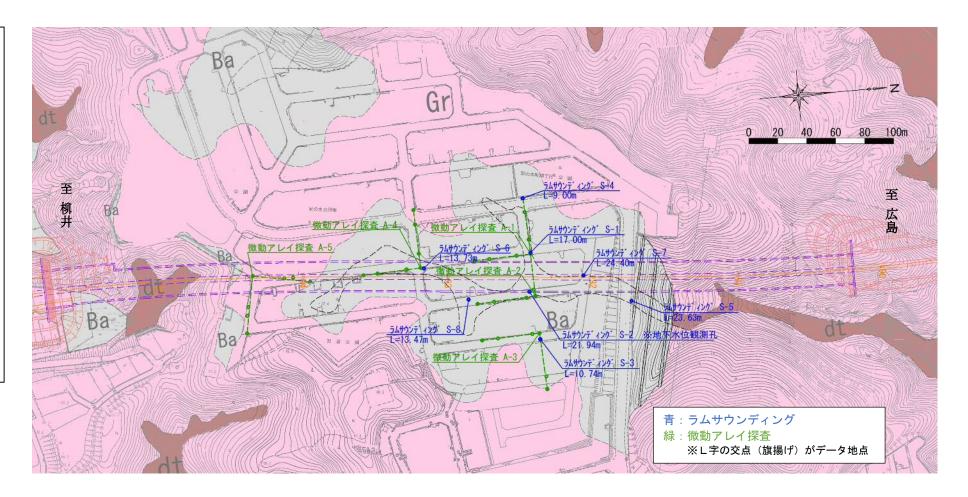
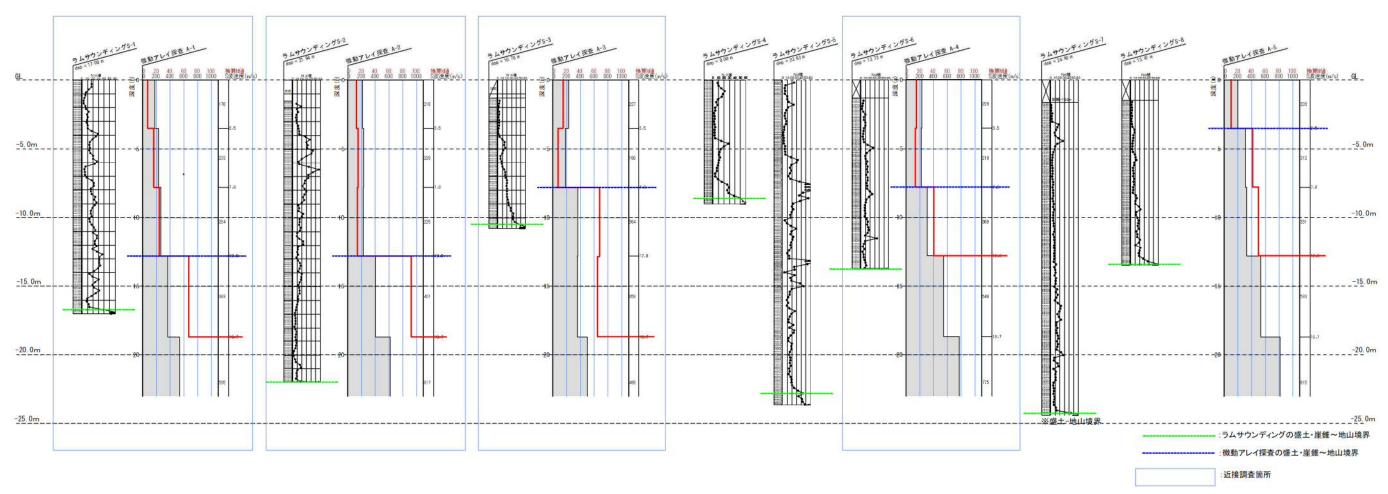


図-6.1 N値とNd値の相関図

7.ラムサウンディング試験と微動アレイ探査結果

●ラムサウンディング結果について


・ラムサウンディング試験結果(Nd値)より盛土分布範囲および層厚を確認。 ボーリングとの対比結果からNd値が漸移的に上昇し、打ち込みが困難となる 付近(Nd値 40 程度)を盛土(崖錐)と地山の境界と判断する。


●微動アレイ探査結果について

・微動アレイ探査については、地表(盛土想定)部分について一定の低速度範囲が確認された。上述のラムサウンディング結果に基づき換算N値(≒)40程度以上となるラインを下図に青線で記入する。

●両試験結果の評価

ラムサウンディング試験と微動アレイ探査の隣接実施箇所の調査結果を比較すると、微動アレイ探査で確認された地山境界が浅くなる傾向である。盛土と地山境界の評価は実測値であるラムサウンディングの結果を採用する。

8. 弹性波探查結果

- ・H14年度に実施した弾性波探査(I測線、K測線)と今回のR1-DS1の結果(速度断面図)を図-8.1に示す。
- ・今回の弾性波探査(R1-DS1)はハギトリ法とトモグラフィ法を併用した。
- ・ハギトリ法では4層が確認された(第1速度層:盛土・強風化層0.35~0.85km/s程度、第2速度層:基盤岩1.70~2.10km/s程度、第3速度層:基盤岩4.00~4.40km/s程度、第4速度層:基盤岩5.00km/s程度)。
- ・トモグラフィ法では地表部~トンネル計画以深を0.3~5.5km/sまで段階的に区分した。
- ・I 測線で分布が予想された低速度帯(断層破砕帯)はボーリング調査で確認されなかった。K測線の低速度帯(断層破砕帯)はボーリング調査で分布を確認している。
- ・今回実施したR1-DS1のハギトリ法では新たな低速度帯(断層破砕帯)は確認されなかった。

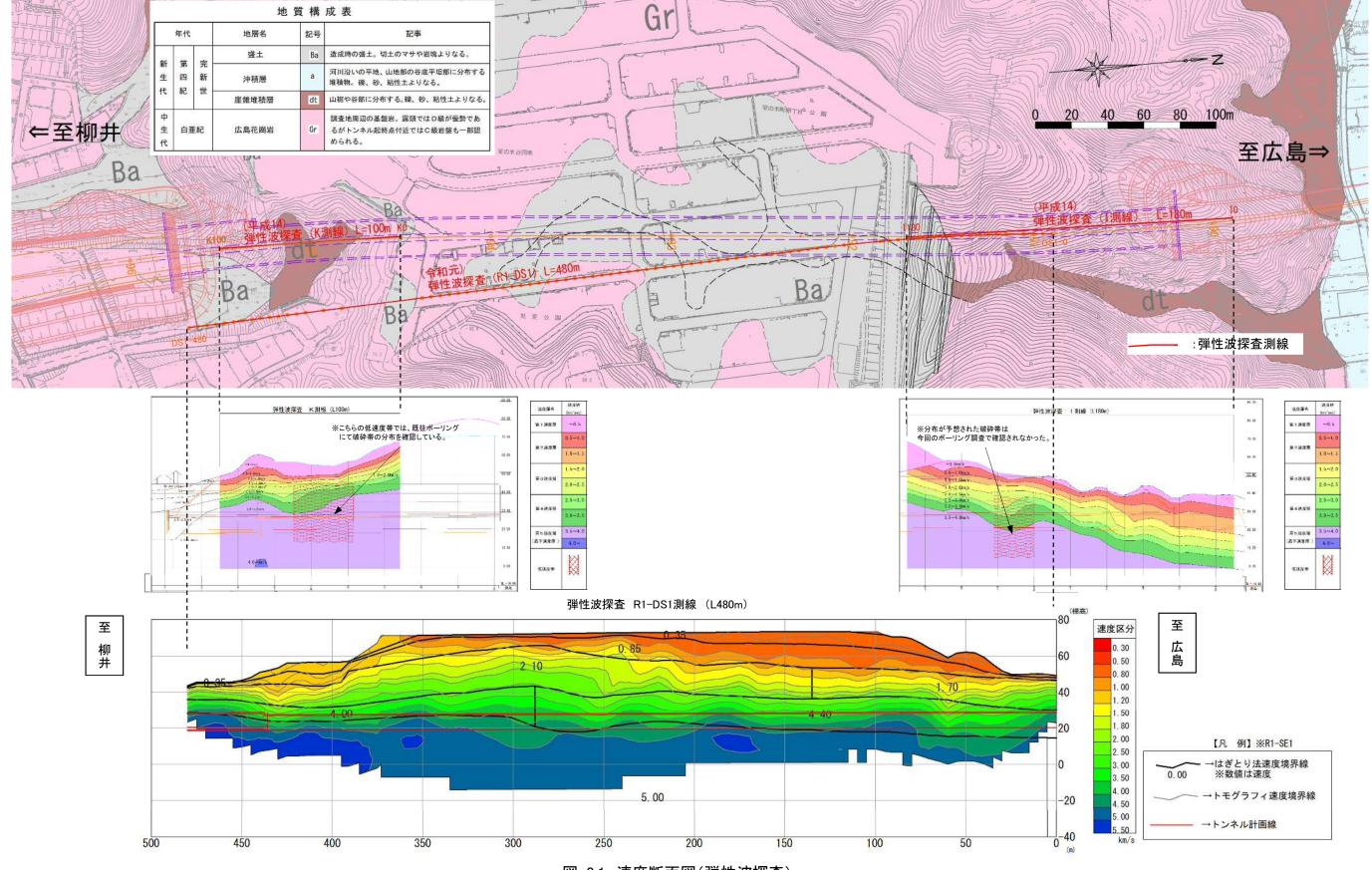


図-8.1 速度断面図(弾性波探査)

9. 地質区分・岩級区分・地山区分

9-1 地層区分

・弾性波探査(トモグラフィ法)の結果及びボーリング調査結果(代表)により盛土および基盤の地層区分(岩級、土軟硬区分)を行った結果、盛土及び崖錐は1.5km/s未満、基盤岩は4層の速度層に区分される(強風化層:1.5km/s未満、軟岩 I:1.2~2.5km/s、軟岩 I~中硬岩:2.0~4.0km/s、中硬岩:3.5~4.5km/s程度、硬岩:4.5km/s以上程度)。速度と地山分類(岩級、土軟硬区分)の関係を表-9.1に示す。

・地層区分の判定に用いた、ボーリングデータ及び弾性波速度の抜粋資料を次ページに示す。

表-9.1 弾性波探査と地層・岩級区分(ボーリングコア状況)の関係(本調査地の目安)

地山 弾性波 速度	地山弾性波速度の標準的な値 (※トンネル技術基準(構造編)・同解説)	地層区分 (調査結果より)	盛土・崖錐堆積層のボーリングコア状況(代表)	ボーリングコアの特徴
0km/s 0.5km/s			盛土	盛土層:礫、玉石が不均一に混入する砂質土。砂 は中~粗粒が優勢。
1.0km/s		盛土 崖錐	崖錐堆積層	崖錐堆積層:渓床、谷底面を埋める堆積土砂。礫 が不均一に混入する砂質土。
地山 弾性波 速度	地山弾性波速度の標準的な値 (※トンネル技術基準(構造編)・同解説)	地層区分 (調査結果より)	花崗岩のボーリングコア状況(代表)	ボーリングコアによる判定 コア形状 割れ目 使軟 区分
1.0km/s	DL DM	D		土砂〜半固結状コアに採取さ V〜WI c〜d D〜E れる。指圧で潰せる程度と軟 質。
1.5km/s		(1.2~1.5)		
2km/s	DH CL	DH ~ CL		職~V b~d B~D る。ハンマー軽打で容易に破砕する程度の硬さ。
2.5km/s		(2.0~2.5)	2	
3km/s	СМ	СМ		短柱状主体に採取される。ハ II~II a~c B~C ンマー打撃で濁音を発し割れる程度の硬さ。
3.5km/s		(0.5.40)		
4.0km/s	СН	(3.5~4.0) CH		柱状コア主体に採取される。 I~II a~c B~C ハンマー打撃で濁った金属音
4.5km/s		(4.5)		を発し割れる程度の硬さ。
	В	В		柱状コア主体に採取される。 I~II a~b B ハンマー打撃で硬質な金属音を発する程度と堅硬。
5.0km/s~		L ,		

※道路トンネル技術基準(構造編)・同解説(日本道路協会 平成15年11月)

表-9.2 ボーリングコアの判定基準

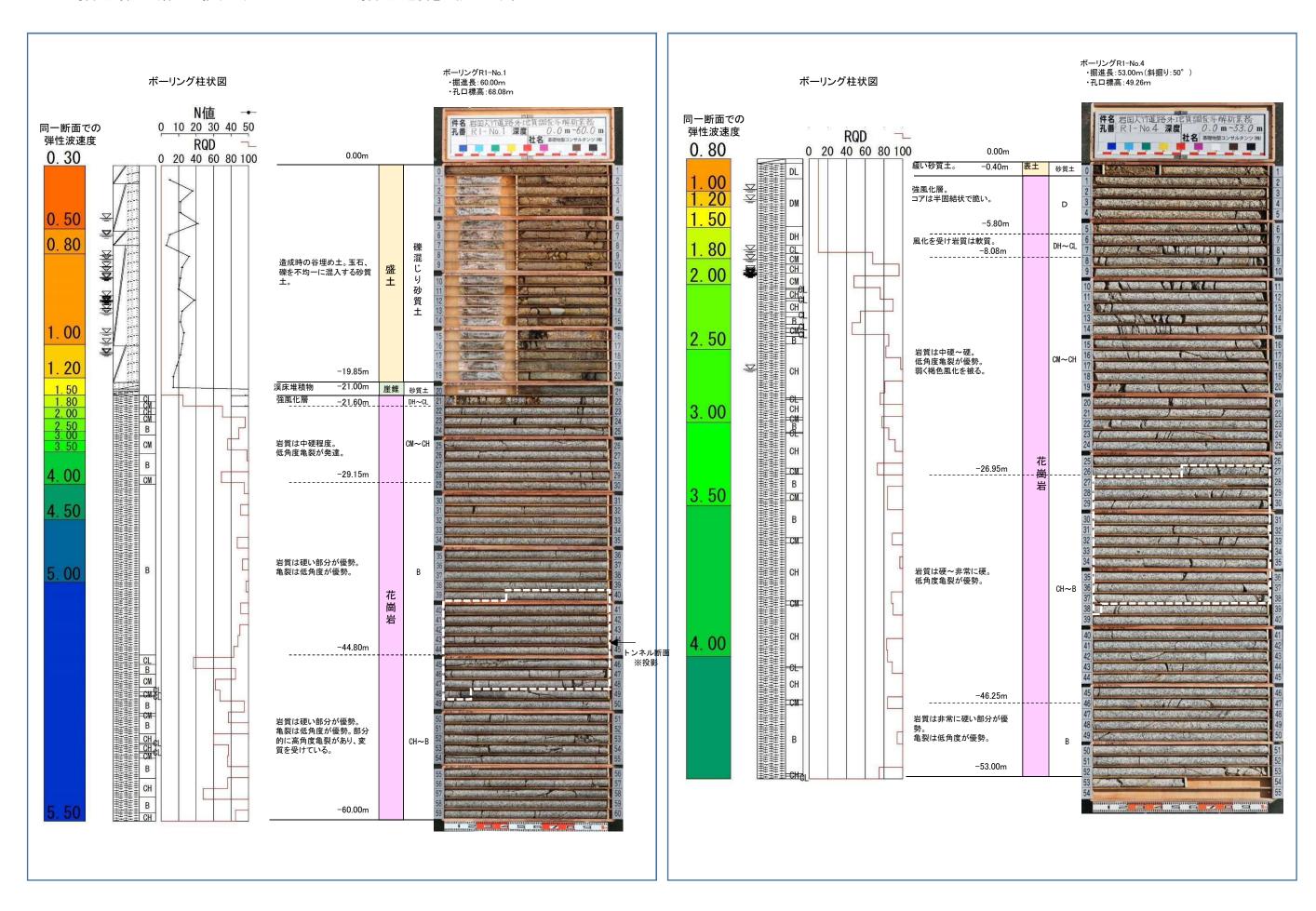
		コア形状区分判定表	コア割れ目状態判定表				
記号	模式図	コア形状	記号		割れ日状態区分		
I		長さが50cm以上の棒状コア。	(8)	密着している。	、あるいは分離しているが割れ口沿いの風化・変質は認められない。		
Ш		長さが50~15cmの棒状コア。	b	割れ月沿いの	風化・変質は認められるが、岩片はほとんど風化・変質していない。		
Ш		長さが15~5cmの棒状~片状コア。	C	割れ日沿いの	岩片に風化・変質が認められ軟質となっている。		
IV	(MORSHVI)	長さが5cm以下の棒状~片状コアでかつコアの外周の一部が認められるもの。	d 割れ目として認識できない角礫状、砂状、粘土状コア。				
V		主として角礫状のもの。			コア硬軟区分判定表		
VI	and a few traces with	主として砂状のもの。		記 号	硬 軟 区 分		
VII	TUTTE	主として粘土状のもの。		A	極硬、ハンマーで容易に割れない。		
VШ		コアの採取ができないもの。スライムも含む。(記事欄に理由を書く)		В	使、ハンマーで金属音。		
				С	中硬、ハンマーで容易に割れる。		
				D	軟、ハンマーでボロボロに砕ける。		
				E	極軟、マサ状、粘土状。		

出典:「ボーリング柱状図及びボーリングコア取扱い・保管要領(案)・同解説」(社)全国地質調査業協会連合会、JACIC、平成27年6月、p26、p28、p29抜粋

表-9.3 岩級区分判定の目安(例)

区分	色調	硬軟の程度	風化変質の程度	割れ目の状態	コアの状態	備考
A	青灰~乳灰	極硬 ハンマーでたた くと金属音D.Bで2cm/ min以下	亀裂面ともおおむ ね 新鮮 未風化	亀裂少なく, おおむ ね20~50cmで密着し ている	棒状〜長柱状でおおむ ね30cm以上で、採取さ れる	
В	乳灰~(淡)褐 灰	硬 ハンマーで軽い金 属音D.Bで2~4cm/min	おおむね新鮮なるも, 亀裂面に沿って若干風 化 変色褐色を帯びる	を主としている	短柱~棒状でおおむね 20cm以下	
СН	褐灰~(淡)灰 褐	中硬 ハンマーでたた くと濁音,小刀で傷つ く硬さ D.Bで3cm/min以上	割れ目にって風化進 行,長石等は一部変色 変質している	割れ口発達、関口部 に一部粘土をはさむ ヘアクラック発達 割れやすい	大岩片状でおおむね 10cm以下で, 5cm前後 のものも多い. 原形復 旧可	
СМ	灰褐~淡黄褐	やや軟〜便 ハンマー でたたくと軽く割れ る. 爪で傷つくことあ りD.Bで期進適		5cm以下 開口して粘	岩片〜細片 (角礫) 状で砕けやすい. 不円形 多く原形復旧困難	軟岩で容易に砕けやす いもの
CL	淡黄褐~黄褐	軟 ごくぜい弱で指で割 れ, つぶれる M.Cで掘進可	岩内部まで風化進行す るも岩構造を残し、石 英未風化で残る		細片状で岩片を残し, 指で砕けて粉状, 円 形, コアなし	破砕帯でコア部のみ細 片状で採取のもの
D	黄褐	極軟 粉状になりやすい M.Cで無水掘可	おおむね一様に風化進 行, まさ土化してい る, わずかに岩片を残 す		土砂状	破砕帯、粘土化帯でコ ア採取不能のもの

出典:「ボーリング柱状図及びボーリングコア取扱い・保管要領(案)・同解説」(社)全国地質調査業協会連合会、JACIC、平成27年6月、p34、35抜粋

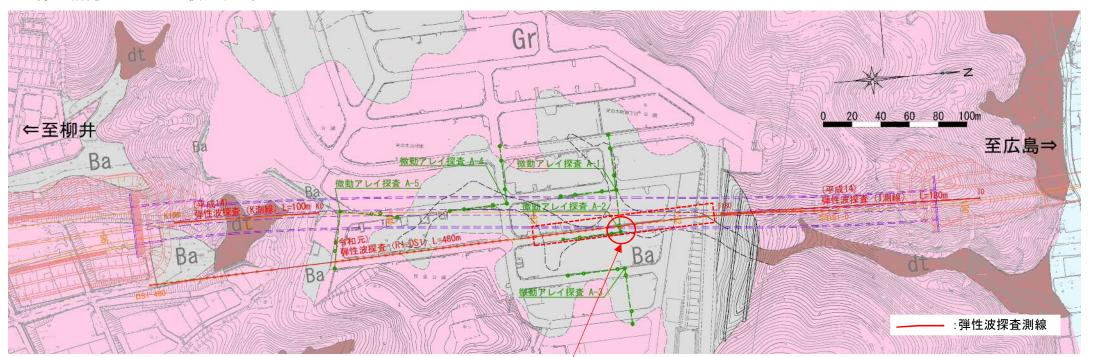

表-9.4 ボーリングコア判定における岩級区分のマトリクス表(本調査地の目安)

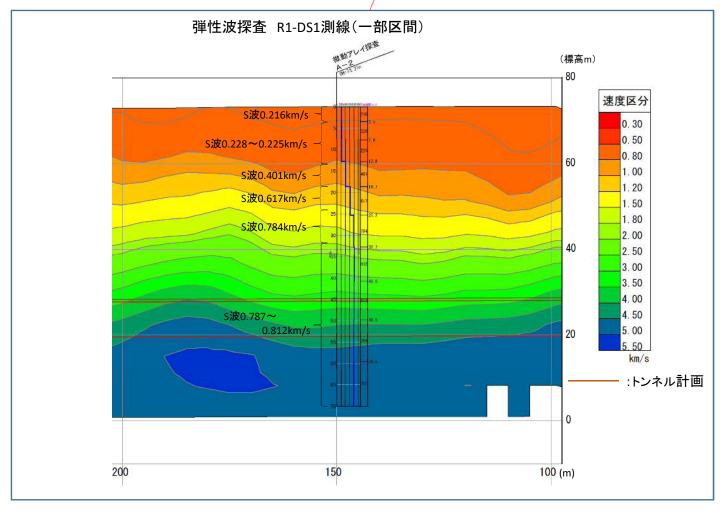
(1) 100									
コア形状	割れ目	N値	Α	E	3	С		D	E
	а			E	В		Н		
Ι	b			E	3	С	Н		
	а			E	3	С	Н		
П	b			В	СН	С	I		
	С			С	Н	СН	СМ		
	а			С	Н	С	М		
	b			сн см		СМ			
Ш	С			СМ		CL			
	d			CL		CL		DH	
77.	b			С	L	CL		DH	
IV	С			С	L	С	L	DH	
	С					С	,L	DH	
V		>50/15				O	Ϋ́	DH	
	d	<50/15				С	:L	DM	
		>50/15						DH	
\ ,π	С	30~50/15						DM	DL
VI		30~50/15						DM	DL
	d	<30						DL	DL
VII	d								DL
		+ +*	LD級につし	\ <u>-1</u>		NI	201+L		

ただしD級については N < 30はDL 30~50/15はDM N > 50/15はDH級とする

9.2 地層区分におけるボーリングコアと速度の関係

・弾性波探査測線に近接する、ボーリングデータと弾性波速度を下記に示す。




10. 微動アレイ探査と弾性波探査の結果

盛土層の分布を確認するために微動アレイ探査を行った。ここでは微動アレイ探査結果を検証するために弾性波探査との比較を行った。比較箇所は弾性波探査R1-DS1と、そのほぼ測線上で実施している微動アレイA-2について行った。

比較結果としては、両調査ともに地表付近では低い速度が確認されており、概ね同程度の間隔で深度方向への速度変化が生じている。ただし、微動アレイ探査ではGL-25.0m付近より速度変化が小さくなる。

盛土・崖錐~花崗岩風化層の境界付近は微動アレイ探査と弾性波探査の結果は概ね一致していることから、微動アレイ探査結果は盛土層分布を確認出来ているため、地質断面図作成の際の補完データとして使用する。

11. 地盤定数の検討方法について

設計および浸透流、変形解析に用いる地盤定数(代表N値、単位体積重量(γ t)、粘着力(c)、せん断抵抗角(ϕ)、透水係数(k)、変形係数(E))については、原則として原位置試験、室内土質・岩石試験が実施出来ている場合はその値(実測値)を採用するが、試験値に異常及び試験の実施がない場合は、各種基準書や参考資料における推定値と併せて総合的に評価を行う。

以下に各地盤定数の評価方法について要約する。

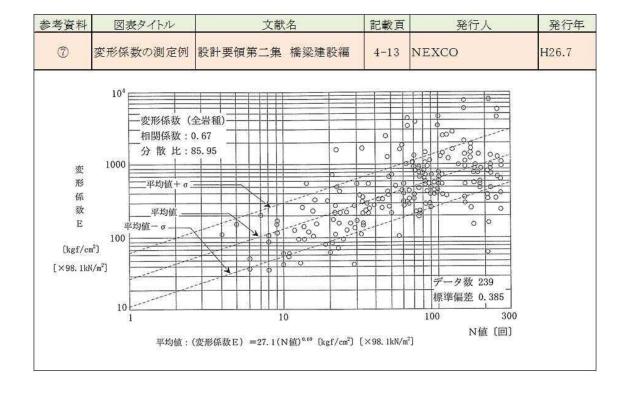
表-11.1 地盤定数の評価方法

地盤定数	分類	判定評価方針	参考文献	備考
代表N値	標準貫入試験実 施可能な全地盤	各地層におけるN値ヒストグラムを作成し、異常値等は除外、代表N値を決定する。なお、N値が50を超えるものについては、NEXCO(平成24年7月)「設計要領第二集(橋梁建設編)」P4-7に示されている換算N値の算出式により評価した。 換算N値=50(回)×(0.3m/50回打撃時の貫入量m)	-	-
単位体積重量	砂質土、礫質土	土質試験が行われている場合はその値を採用する。試験 結果が異常値及び試験データがない場合は参考文献より 推定する。	「道路土工 盛土工指針」、(社) 日本道路協会、H22.4p101	参考資料①
TEMMER	基盤岩	土質試験が行われている場合はその値を採用する。試験 結果が異常値及び試験データがない場合は参考文献より 推定する。	「岩盤分類 応用地質特別号」、 日本応用地質学会、S59.8、p93	参考資料②
	粘性土、砂質土、 礫質土	土質試験が行われている場合はその値を採用とする。試験 結果が異常値及び、試験データがない場合は参考文献よ り推定する。	「道路土工 盛土工指針」、(社) 日本道路協会、H22.4、p101	参考資料①
料着力			「設計要領第二集 橋梁建設編」、NEXCO、H26.7、p4-10	参考資料③
70/0/3	基盤岩	土質試験が行われている場合はその値を採用する。試験 結果が異常値及び、試験データがない場合は参考文献より推定する。	「設計要領第二集 橋梁建設編」、NEXCO、H26.7、p4-12	参考資料④
			「設計要領第二集 橋梁建設編」、NEXCO、H26.7、p4-9	参考資料⑤
	砂質土、礫質土	土質試験が行われている場合はその値を採用する。試験 結果が異常値及び試験データがない場合は参考文献より 推定する。	「道路土工 盛土工指針」、(社) 日本道路協会、H22.4p101	参考資料①
せん断抵抗角			「設計要領第二集 橋梁建設 編」、NEXCO、H26.7、p4-10	参考資料③
	基盤岩	土質試験が行われている場合はその値を採用する。試験 結果が異常値及び、試験データがない場合は参考文献よ り推定する。	「設計要領第二集 橋梁建設 編」、NEXCO、H26.7、p4-12	参考資料④
			「設計要領第二集 橋梁建設 編」、NEXCO、H26.7、p4-9	参考資料⑤
透水係数	砂質土、礫質土	原位置試験が行われている場合はその値を採用する。試験結果が異常及び試験データがない場合は土質試験(粒度試験)結果より推定式により算出する。 k=0.036D ₂₀ ^{2.368} ・・・クレーガーの式	-	_
	基盤岩	原位置試験値を採用する。	-	_
	砂質土、礫質土	原位置試験値を採用する。	-	_
変形係数		原位置試験値、岩石試験値を基本として評価を行う。試験	「設計要領第二集 橋梁建設編」、NEXCO、H26.7、p4-13	参考資料⑥
	基盤岩	結果が異常値及び、試験データがない場合参考文献より 推定する。	「設計要領第二集 橋梁建設 編」、NEXCO、H26.7、p4-13	参考資料⑦

考資料	図	表タイトル	15	文献名	記載	道	务	8行人	発行年
①	土質定	三数	道路土口	道路土工 盛土工指針			:)日本道	直路協会	H22.4
		種 類		状 態	単位体積 重量 (kN/m³)	せん断 抵抗角 (度)	粘着力 (kN/㎡)	地盤工学 会基準 ^(3:2)	
		礫および礫 まじり砂	締め固めたもの	20	40	0	{G}		
	盛	砂	締め固めたもの	粒径幅の広いもの 分級されたもの	20 19	35 30	0	{S}	
	土	砂質土	締め固めたもの	DE - C. A. C.	19	25	30以下	{SF}	
			締め固めたもの		18	15	50以下	{M}, {C}	
		54.40.100000000	締め固めたもの	100	14	20	10以下	{V}	
		TEM.	密実なものまた	とは粒径幅の広いもの	20	40	0	{G}	
		礫	密実でないものまたは分級されたもの			35	0	101	
		礫まじり砂	密実なもの			40	0	{G}	
		探よしり砂	密実でないもの	19	35	0	101		
		砂質土	密実なものまれ	20	35	0	{S}		
	200		密実でないもの	18	30	0	(5)		
	自		密実なもの	19	30	30 以下	{SF}		
	然	117 94 工	密実でないもの	17	25	0	10.17		
	Lite	粘性土	固いもの(指で	-	25	50 以下	HITCHE I		
	地盤		やや軟らかい 入) ^{注1)}	17	20	30以下	(M), (C)		
	1.466	1 1 X	軟らかいもの	(指が容易に貫入) 注1)	16	15	15 以下	PARTITION.	
			2-1	で強く押し多少へこむ) ^{注1)}	17	20	50 以下		
		粘土および シルト	やや軟らかい 入) ^{注1)}	もの(指の中程度の力で貫	16	15	30以下	{M}, {C}	
			軟らかいもの	(指が容易に質入) 注1)	14	10	15 以下		
		関東ローム		Eventual and Legite	14	$5(\phi_u)$	30以下	{V}	
		固いも		りである。), やや軟らかいもの(<i>N=</i> は, およその目安である。	4~8),	軟らか	いもの($V=2\sim4$)	

7	参考資料	図表タイトル	文献名	記載頁	発行人	発行年
	2	ボーリングコア及び調査坑内の肉眼 観察による岩盤区分	岩盤分類 応用地質特別号	p93	日本応用地質学会	s59.8

手法			ポーリン	グコアー	観察によ	る岩区	分				調査	坑内の肉眼観	祭に	よる岩	区分			
		Ф	2	3	4	参	考デ	- 9 (t	PD PD	5	6	0		4	ま考 デ・	- 夕 (例	D	
区分	色 調	硬軟の程度	風化変質の程度 (細区分)	割れ目の状態	コアーの状態(細区分)	E _{sb} (kg/cm)	RQD (%)	V _f (km/sec)	V _s (km/sec)	硬軟の程度 (細区分)	風化変質の程度	割れ目間隔と状態 (細区分)	ショア硬度 S _h	山中式 土壤硬度 Yh(mm)	コンクリート び よ う 貫 入 量 D _h (mm)	シュミット ハンマー 反発度 S ₁ (%)	間隙率 n (%)	密 度 r (t/m³)
A	青灰 ~乳灰	極硬 ハンマーで叩く と金属音。 D.B.で2cm/ min以下。	き裂面とも、おおむね新鮮。 未風化。 (A)	き裂少なく、おおむね 20~50 cmで密着している	棒状〜長柱状で おおむね30cm以 上で採取される (I)	15000 <	75~100	5<	2.9<	新鮮堅硬 (A)	造岩鉱物の変質なし。	割れ目間隔50cm以上。 割れ目で着し、割れ目 に沿った変質。変色な し。 (I、a)						2.6 5
В	乳灰 (淡)褐灰	硬 ハンマーで軽い 金属音。 D·B·で2~4 cm/min。	るも、き裂面に 沿って若干風化	割れ目間隔5~ 15cmを主としている。一部開口している。	おおななな20cm以	25000 ~ 8000	60 ~ 90	4.8<	2.6<	堅硬 (A)	岩石は淡褐色をおびて いる程度。	割れ目間隔15~50cm程度。割れ目に沿って酸化鉄付着。 (Ⅱ~Ⅲ、b)						2.6 5
C _H	褐灰 (淡) 灰褐	中硬 ハツマーで金属す 音~濁音が見得の る。小別で観音の が。小別で る。 小別で る。 小別で る。 3 cm/min以上	変質している。 (B)~(C)	割れ目発達、開 口部に一部粘土 はさむ。ヘアク ラック発達。割 れ易い。	短柱状。コア長 5~15cm。 原形復旧可。 (Ⅲ)	5000 ~ 15000	25 ~ 75	4.1~5.0	2.0~2.5	岩石は割合い硬質(B)	黒霊母、斜長石は若干 変質	割れ目間隔5~30cm程度。面密着。き裂面に沿って薄い粘土をはさむ。 (皿~IV、b~d)	50 ~ 60			>31	3±	2,6 0
C _M	灰褐 一族黄褐	に割れ濁音を発	除き、風化進行。 長石、雲母はお おむね変質して	開口して、粘土	岩片〜細片(角 礫)状。砕けあく、不円形多い。 コブ長5cm以下 で原形復旧困難 (IV)	2000 ~ 8000	0~50	3.0~4.2	1.5~2.1	ハンマーで軟くたたい て割れる (C)	斜長石の変質進む。	割れ目間隔 5 ~15cm程度。き裂面に沿って枯土をはさむ。 (IV~V、c)	40~49			21 ~ 30	5±	2,5 0
C _L	淡黄褐 ~黄褐	軟 ハンマーである に砕ける。 別非常に粗い。 極く脆弱でよれる。 M.C.で揺進可。	岩内部まで風化 進行するも、岩 構造残し、石英 末風化で残る。 (C)~(E ₁)	割れ目多いが、 粘土化進行、土 砂状で密着して いる。	岩片状~礫状。 指で砕けて粉状 円形コアーなし 【W~(V)	800 ~ 4500	0 ~ 25	2.0~3.3	1.0~1.6	ハンマーでぼろぼろに 砕ける。指圧砕で一部 砕ける。粒子は硬い礫 状〜細片状 (D~C)	られるが、カリ長石の	割れ目間隔5~50cm程度。割れ目状況明りょう。 (Ⅲ、a~b) (Ⅱ~IV、d)	26 ~ 39	>37	<29	11 ~ 20	10±	2.4 0
D _H		軟 ハンマーでぼろ ぼろに砕ける。	おおむね一様に 風化進行。 (D~E ₂)	7 1	礫状 (V∼VI)	800 ~ 1500	0~10	1.5~2.5	1.2>	は容易。指圧砕でつぶ		広くなる。割れ目間隔	13 ~ 25	33~36	30 ~ 69	<10	14~20	2.30 ~2.20
D_{M}	黄褐	極軟まさ化。	(E ₂)	粘土化進行のため、クラックなし。	砂状 (VI)	300 ~ 800	0	<1.5		指圧砕で石英カリ長石の粒子細片を残す砂状になる。粒子は硬い。 (E ₁)			5~12	28 ~ 32	70 ~ 99		20~35	2.1 0
DL				1	砂状 ~シルト状 (VI)	50 ~ 300	0	<1.2		手の平での指圧砕で、 多くは粉末状となる。 一部砂状 (E ₂)	長石類のほとんどが、 変質粘土化している。	割れ目は不明か、あっても50cm以上。 (I、c) (II、b)	<4	<27	>100		35~43	1.9 0


備考:①②上位ランク③④下位ランク、①②下位ランク③④上位ランクのときは、いずれも下位ランクとして表示する。D.B.; ダイアピット、M.C.; メタルクラウン、:この表は文献 1 のいくつかの表をまとめたものである。

参考資料	考資料 図表タイトル		文献名	THE STATE OF THE S	記載頁	発行人		発行年	
3		値による場 定例c、φ	設計要領第二集 権	禁梁建設編	4-10	NEXCO		H26.7	
			表 4-2-4 換算 N	値による場合の	測定例				
	\		砂岩·礫岩 深成岩類	安山岩	350	岩・凝灰岩 灰 角 礫 岩	備考		
E 10	占着力 cN/m²)	換算 N 値 平均値の関	15. 2No. 327	25. 3N ^{0. 334}	16. 2N ^{0. 606}				
C X	MA III A	標準偏	差 0.218	0, 384		0. 464	·Log 軸上の	值	
0.0	tん断 K抗角	換算 N 値 平均値の関	5005 Visite 17-75567 Visite 17-7567 Visite 17-7567 V	6.82LogN +21.5	0. 88	88LogN +-19.3	Log の底は	10	
	(度) 標準偏身		差 4.40	7. 85		9. 78			

考資	資料 図表タイトル		文献名		記載頁	発行。	発行人				
4		強度定	三数の測定例	設計要領	投計要領第二集 橋梁建設編		4-12	NEXCO		H26.7	
V2.		0.0			表 4-2-6 強度	定数の測定	定例	War we		-70	
39		岩	粘柱	仮岩 (ダム	サイトの例)		花崗岩	台(本四連絡橋基	礎の例)	j.	
			c (kN/i	n ²)	φ (°)			(kN/m²)	φ (°)		
		級 範囲		平均	範 囲	平均	範 囲	代表値	代表値		
	硬岩	В	2, 250~2, 750	2, 500	40~50	45	1,500~2,	500 1,500	45		
		Сн	1, 750~2, 250	2, 000	35~45	40	1,000~2,	000 1,000	40	**	
		C _N	750~1,750	1, 250	35~45	40	500~1,0	500	40		
軟	軟	C _L	250~ 750	500	30~40	35	100~1,0	100	37	ASCALLED TO THE STATE OF THE ST	
1	岩	D	100以下	0	20~30	25	0~ 50	00 0	30~35		

参考資料	図表	をタイトル	3	文献名	記載	至 発行人	発行年	
⑤	強度定	数の測定例	設計要領第二	集 橋梁建設編	4-9	NEXCO	H26.7	
	場所	試験名	特 徴	設計値への適用	-	備考		
		三軸圧縮試験 又は一面せん断 試験	室内試験として は精度が高い。	本試験は、割れ目のない局	硬岩では非常に高圧をかける が、供試体を小さくしないと破 品部的な 壊しないときがある。			
	室内	一軸圧縮試験と 引張又は圧裂 試験	非常に簡便では あるが、精度は 低い。	値を求める結果になるので の強度定数の決定にあたっ 現場の状況を良く判断し、 の低減をする必要がある。	ては、	圧縮強度 q_o と引張強度 T_u より c , ϕ を推定する。 $c = \frac{1}{2} \sqrt{q_u \times T_u}$ $\phi = \sin^{-1} \left(\frac{q_u - T_u}{q_u + T_u} \right)$		
		超音波縱波伝播速度試験	比較的容易に超 音波速度を得る ことができる。	この値から直接 c, φを求 とは難しい。	GOTHER GOS.	弾性波探査結果と合わせて, 岩 盤の亀裂の程度を知る。		
	位 パルを利用した 細的な情報が 同 上 盤の		超音波試験の結果と合わせて岩 盤の亀裂の程度を知る。 変形係数を推定する。					

考資料	図表タイトル	図表タイトル 文献名		発行	· 入
6	変形係数の測定例	設計要領第二集 橋梁	建設編 4-13	NEXCO	H26.7
					kN/mੈ
岩	粘板岩(ダム	サイトの例)	花崗岩(本四連絡橋基	礎の例)_
級	範 囲	平均	範 囲		代表値
В	3,000,000以上	*3,000,000	1, 200, 000~3, 0	000, 000	2, 000, 000
C _H	1,000,000~3,000,0	00 2,000,000	600,000~1,20	0,000	800, 000
C _M	500,000~1,000,00	0 750,000	300,000~ 60	450, 000	
CL	100,000~ 500,000	300,000	150,000~ 30	0, 000	200, 000
	100,000 以下		5,000~ 150	,000	10,000~100,000

(2) 水文調査概要

1. 水文調査位置

トンネル工事影響の把握および解析検討に用いる地下水位を把握するため水文調査(水位観測)を実施。観測地点位置を以下に示す。

●地下水位観測地点

観測種別		地点名	対象	深 さ (GL-m)	観測方法	計測期間
		W-R1-No.1	地山水位	60.00		R2年3月中旬~継続中 (約11ヵ月)
		W-R1-No.1'	盛土内水位	21.00		R2年3月中旬~継続中 (約11ヵ月)
 地下水位観測	ボーリング調査孔	W-R1-No.2	地山水位	65.00] 自記水位計	R2年9月下旬~継続中 (約4.5ヵ月)
		W-R1-No.3	地山水位	66.00	日記水位制	R2年6月下旬~継続中 (約7.5ヵ月)
		W-H30-No.5	地山水位	70.00		R1年6月中旬~継続中 (約20ヵ月)
	ラムサウンディング孔	W-S-2	盛土内水位	20.31		R2年2月初旬~R2年9月末(終了)

※資料のとりまとめ期間はR2年12月まで

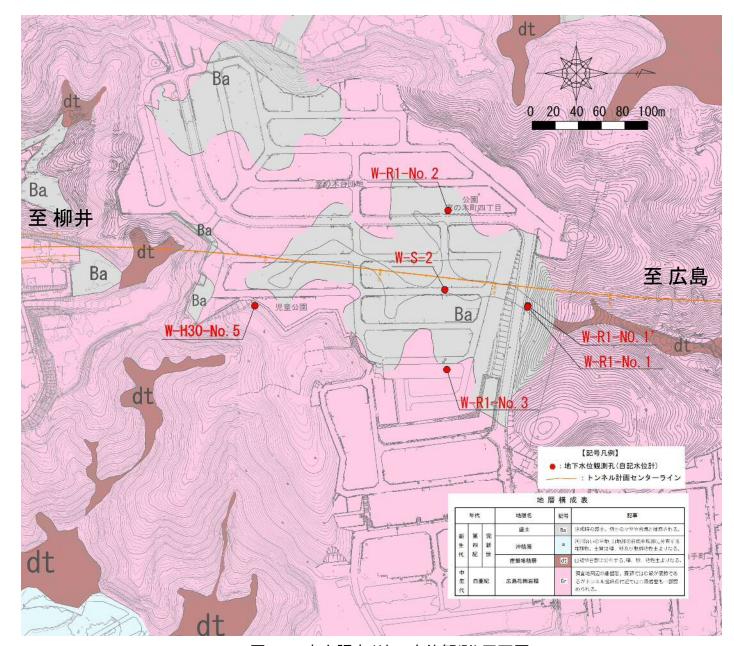


図-1.1 水文調査(地下水位観測)平面図

図-1.2 雨量観測所位置図

2. 地下水位観測結果(地山水位計測地点)

地山内水位はボーリング孔(R1-No.1、R1-No.2、R1-No.3、H30-No.5)を地下水位観測孔として、自記水位計を用いて1時間毎の計測を実施。各地点の水位変動と日雨量・実効雨量のハイドログラフを以下に示す。なお、降水量データは調査範囲に最も近い岩国土木建築事務所観測局データ(山口県土木防災情報システム)を用いた。

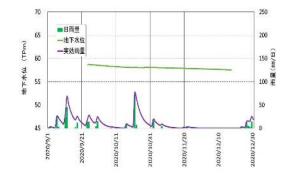
*実効雨量の条件:逓減係数0.75、累積日数30日とした。

Ba

W-RI-No. 2

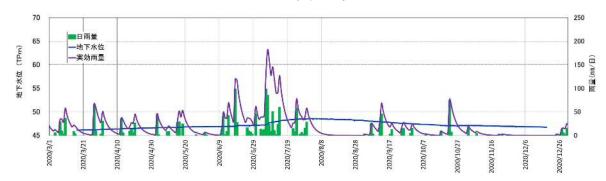
Ba

W-RI-No. 1


W-RI-No. 1

W-RI-No. 1

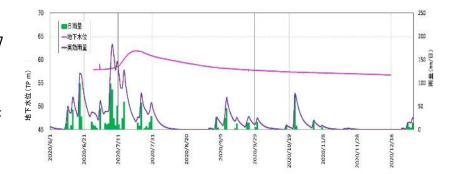
W-R1-No.2


地盤標高:TP 73.50m 最高:GL-14.77m(TP 58.73m) 最低:GL-15.98m(TP 57.52m) 平均:GL-15.49m(TP 58.01m)

計測期間では渇水期に向けて緩やかに低下傾向(約3カ月で約1.2m低下)。

W-R1-No.1

地盤標高:TP 68.08m 最高:GL-19.50m(TP 48.58m) 最低:GL-21.98m(TP 46.10m) 平均:GL-20.83m(TP 47.25m) 降雨時の瞬間的な変動は認められず長期的な変動を示す。観測開始から徐々に水位の上昇が認められ、2020年7月初旬~中旬での連続降雨後は概ね1カ月で約1.3m上昇、8月初旬より緩やかに低下傾向を示す。期間の最大一最低では約2.5mの水位差。



W-R1-No.3

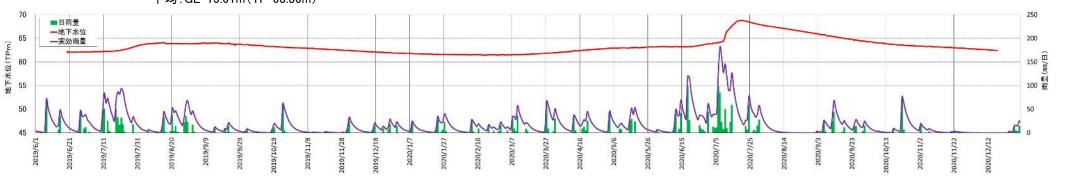
地盤標高:TP 73.66m 最高:GL-11.76m(TP 61.90m)

最低:GL-16.96m(TP 56.70m) 平均:GL-15.39m(TP 58.27m)

降雨時の瞬間的な変動は認められず長期的な変動を示す。2020年7月初旬の連続降雨最大上昇は2020年7月初旬~中旬での連続降雨後は概ね12日間で約3.4m上昇、7月下旬より緩やかに低下傾向を示す。期間の最大-最低で約5.2mの水位差。

【地山の地下水位変動について】

観測地点:W-R1-No.1、W-R1-No.2、W-R1-No.3、W-H30-No.5


地山水位は降雨に伴う瞬間的な変化は認められず緩やかな変動を示す。水位の変動傾向(降雨影響がやや遅れて現れる)は類似している。

* 豊水期6月~10月, 渇水期1月~3月

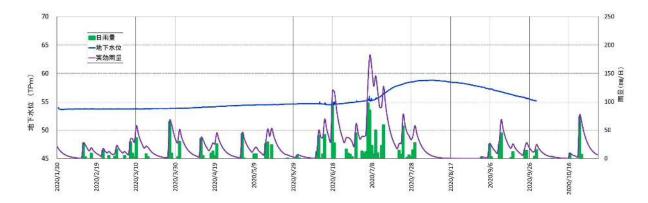
観測地点では計測期間が最も長い。降雨時の瞬間的な変動は認められず長期的な変動を示す。 2019年の7月約1カ月の水位上昇は1.8m程度の上昇であったが、 2020年7月初旬~中旬での連続降雨後は概ね12日間で約4.5m上昇した。期間の最低一最高で約7.3mの水位差。 W-H30-No.5

: 地下水位穀利孔(自記水位計)

地盤標高:TP 78.97m 最高:GL-10.20m(TP 68.77m) 最低:GL-17.53m(TP 61.44m) 平均:GL-15.61m(TP 63.36m)

3. 地下水位観測結果(盛土水位計測地点)

盛土内水位はボーリング孔(R1-No.1')、ラムサウンディング孔(S-2)を地下水位観測孔として、自記水位計を用いて1時間毎の計測を実施。各地点の水位変動と日雨量・実効雨量のハイドログラフを以下に示す。


地盤標高: TP 68.08m

2020年6月~7月の多雨時(概ね50mm/日以上)で瞬間的な上下変動が認められる(7/6に最大6時間で5.8m上昇)。それ以外での水位変動は緩やかであり、豊水期の最大上昇は2020年6月初旬以降の連続降雨後、概ね1.5ヵ月で約1.4m上昇。期間の最大一最低では約7.2mの水位差。

W-S-2

地盤標高; TP 73.33m

最高: GL-14.54m(TP 58.79m) 最低: GL-19.71m(TP 53.62m) 平均: GL-18.03m(TP 55.30m)

2020年6月~7月の多雨時に2~3時間での瞬間的な上下動が認められる(7/6に最大で70cm程度)。それ以外での変動は緩やかであり、豊水期の最大上昇は2020年6月初旬以降の連続降雨後、概ね1.5カ月で約4.2m上昇。期間の最大一最低では約5.2mの水位差。

※2020年9月末に自記水位計回収時に不具合が生じ、観測孔(塩ビパイプ)の引き抜きを行ったため以降の観測は不可。

【盛土の地下水位変動について】

観測地点:W-R1-No.1'、W-S-2

W-R1-No.1'は多雨時(概ね50mm/日以上)で急激な上下動を示すのに対し、W-S-2は地山水位変動と似た緩やかな変動を示す。 W-R1-No.1'は擁壁背面の盛土のり面に位置し、降雨の浸透が直接的であるのに対し、W-S-2の位置する団地面は地表が舗装、排水路等で整備されており、地面への降雨の浸透が制限されているためと考えられる。

両地点ともに、豊水期には水位の上昇が確認出来るが、渇水期に向けて減少し一定水位を保っている状況である。

*豊水期6月~10月, 渇水期1月~3月

4. 地下水位観測結果について

全観測地点の地下水位(TP)変動図を重ねたものを図-4.1に示す。

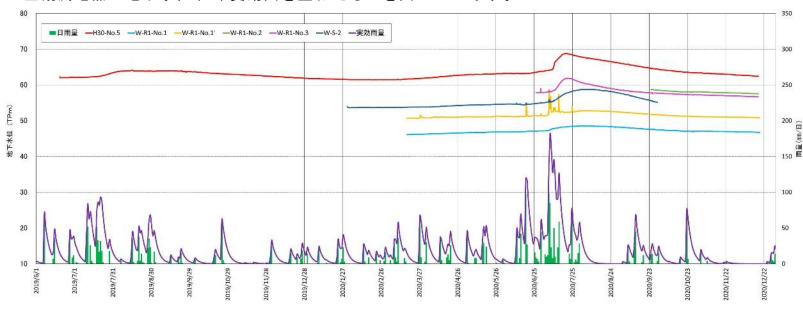


図-4.1 地下水位(TP)変動図

観測地点の位置関係や帯水層の違いから水位分布位置は異なる(図-4.4、-4.5)。各観測地点毎に水位変化は特徴があり、特に豊水期においては変動幅や変動形態が異なる。 渇水期の定常水位については各地点ともに概ね同様な変動傾向を示している。

【【降水量について】

観測地点の降水量(岩国土木事務所観測局)について過去10年間の月毎の累積変動を図-4.2 に示す。また、令和2年と過去10年間の平均値の月毎グラフを図-4.3に示す。

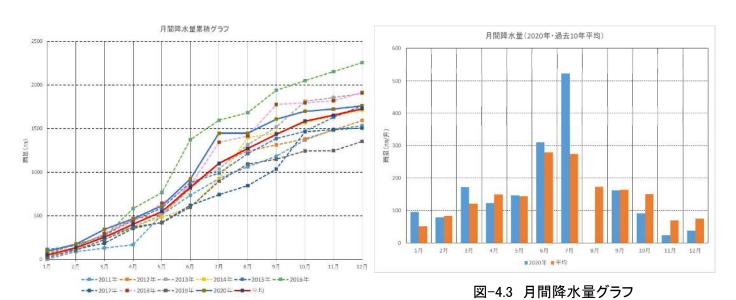


図-4.2 月毎雨量累積グラフ

令和2年の降水量は過去10年の平均と比較し1月~6月は平年並み、7月が2倍程度と 非常に多く、8月以降はやや少ない傾向であったが、年間の累積雨量は平均値程度と なっている。

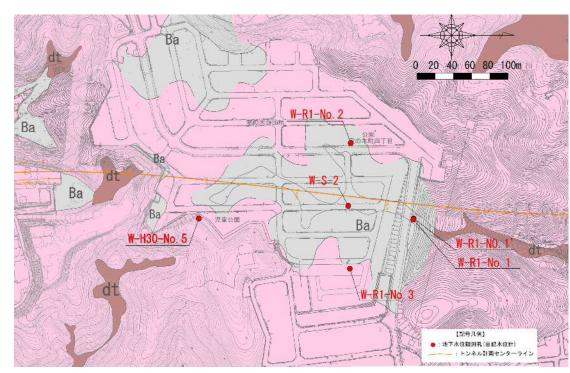


図-4.4 地下水位観測調査位置図

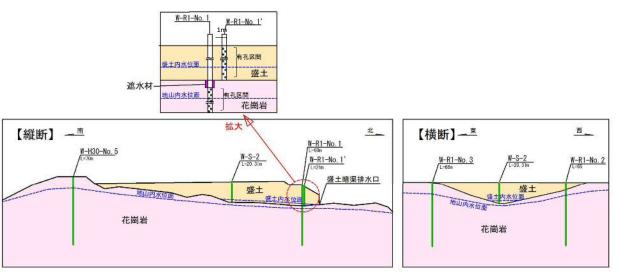


図-4.5 地下水位観測孔位置と地下水位分布イメージ図

【定常水位の設定方法】

自記水位計による観測結果より、盛土部及び地山部において豊水期には 降雨の影響により水位が上昇することを確認。

その後、緩やかに減少傾向となっており、渇水期である1月~3月に最も水位が減少するものと想定。

令和3年3月までの水位の観測を行い渇水期間において分布している水 位を定常水位として設定。

*豊水期6月~10月. 渇水期1月~3月