雨水管におけるマンホールでの 局所損失の重要性

荒尾 慎司1・森山 克美2・楠田 哲也3

1松江工業高等専門学校 環境・建設工学科 (〒690-0887 松江市西生馬町14-4)

2九州共立大学 工学部 環境土木工学科 (〒807-8585 北九州市八幡西区自由ヶ丘1-8)

3北九州市立大学 国際環境工学部 (〒808-0135 北九州市若松ひびきの1-1)

雨水管の設計や内水氾濫計算においては、雨水管の流下能力を適性に評価する必要がある. 従来の研究で、雨水管の接続部であるマンホールでの局所損失が無視しえないほど大きくなる ことがあることがわかっており、この損失を無視した場合、内水氾濫計算結果に大きな影響を 与えると考えられる.本研究では、マンホールに係わる構造要素を取り込んだ実験式を提案す ることを最終目標としているが、本論文では、既往の研究成果を基に、マンホールの局所損失 の重要性について述べる.

キーワード 下水道,雨水,マンホール,損失,内水氾濫

1. はじめに

近年,都市化の進展にともなって,勾配の急な丘陵 部でも下水道が普及してきている.水田・畑等の農地 や山林が残っていた頃とは異なり,雨水の農林地での 貯留効果の減少や宅地開発,道路舗装率の上昇による 地下浸透率の低下等のため,流入時間が短縮するとと もに流出率が増加し,いわゆる都市型浸水が生じやす くなっている.雨水管は雨水排除施設のひとつとして 都市型浸水を防止するための重要な役割を担ってい るので,雨水管の設計手法をより合理的なものとする ための検討が欠かせない.

最近では、地表面の洪水氾濫解析において、雨水管 への流入・流出を考慮した計算もなされており、雨水 管の排水効果が地表面の氾濫解析に反映されるよう になってきている.しかし、豪雨下ではマンホール等 から雨水が溢れ地表面に流出することになるため、よ り現実に近いモデルを構築するには雨水管網の流下 能力を適性に評価する必要がある.それには、管路の 接合部であるマンホールの形状損失をより正確にモ デルに組み込まなければならない.

雨水管の設計では,現在でもマンホールの局所損失 は、考慮されていない¹⁾.既往の研究により、マン ホールの局所損失は、管路の摩擦損失と比べて,決し て無視しえるほど小さくはないことが知られている ^{2),3)}.建設コンサルタントを中心に日本でも数多く 利用されるようになってきている海外で開発された 氾濫解析モデル⁴⁾では、マンホールの局所損失を計 算することはできるが,使用するモデル毎に異なる式 形を与えており,計算結果が異なっている.この理由 は,マンホールと接続管路に関わる構造要素(マンホ ール形状,マンホール径,管路形状,管径,管路の水 平面接合角度,マンホールの上・下流管の段差等)が 存在するため,これらの構造要素すべてを満足する実 用的な式がないためである.マンホールの局所損失を 無視した氾濫計算を行うと地表面での浸水深や浸水 範囲を過小に見積ることになる.そこで,本論文では, 既往の研究成果をもとに,雨水管の摩擦損失係数とマ ンホールの局所損失係数を比較することにより,マン ホールで生じる局所損失の重要性を論じる

(1)マンホールの局所損失に影響を与える構造上及び 水理学的要因

マンホールの局所損失に影響を与える構造上及び 水理学的要因を分類すると以下のようになる. a)構造上の要因

①マンホール形状(正方形,長方形,円形,マンホー ル底面形状),マンホール径

②接合管路形状(円形,矩形),管径,管勾配
 ③接合管路の鉛直接合形態(管頂接合,水面接合,管
 中心接合,管底接合,段差接合(図-1参照)
 ④接合管路の水平面接合形態(図-2参照)

マンホールの局所損失に特に大きな影響を与える 構造上の要因は、マンホール径比(マンホール径/管 径)、管径比(流入管径/流出管径)、接合管路の水 平面接合形態及び鉛直接合形態である.

b)水理学的要因

①開水路流れ, ②管水路流れ, ③常流, 射流, ④マン ホール内の水深

開水路流れでは、マンホール底面のインバートに沿って、雨水が流下するため、マンホールでの局所損失は小さくほぼ無視し得る.一方、管水路流れでは、マンホール内で発生するスケールの大きな渦の発生や、流入管から流入した雨水が、マンホール壁面へ衝突すること等により、損失が無視し得ないほど大きくなる.なお、図-1中のQは流量、Sは流入管と流出管の段差、hは流入管の内壁頂部から水面までの距離、Duは流入管内径、Daは流出管内径である.

(2) マンホールと接合管路の寸法

表-1にマンホールと接合管路の寸法を示す.マンホール径比(マンホール内径 b/管内径 D)には,様々な種類がある.

図-1 マンホールの構造上の要因

表-1 マンホールと接合管路の寸法

マンホール種別(円形)	1号	2号	3号	4号
マンホール内径b(mm)	o(mm) 900 1200		1500	1800
管内径D(mm)	250,300,350,400 450	250, 300, 350, 400 450, 500, 600	250, 300, 350, 400 450, 500, 600, 700 800	250, 300, 350, 400 450, 500, 600, 700 800, 900
b∕D	3.6、3.0、2.57、2.25 2.0	4.8, 4.0, 3.43, 3.0 2.67, 2.4, 2.0	6.0, 5.0, 4.29, 3.75 3.33, 3.0, 2.5, 2.14 1.88	7.2, 6.0, 5.14, 4.5 4.0, 3.6, 3.0, 2.57 2.25, 2.0

2. 従来の研究

雨水管は、道路に沿って敷設されるため、図-2に 示すように、種々の水平面接合形態が現れる.流入管 と流出管がそれぞれ1本ずつ接合する2方向接合マ ンホールに関しては、表-2に示すように、数多くの 研究事例^{2)~22)}があり、マンホールの局所損失は、ほ ぼ解明されている.著者らは、実験的研究から管水路 流れにおけるマンホールの構造上の要因とマンホー ル内の水深を考慮した2方向接合マンホールのエネ ルギー損失の算定式を考案している²³⁾.流入管2本 を有するT字路及びY字路交差点下の研究例は少な く、流入管3本を有する十字路交差点下に関しては、 研究例は皆無である(図-2参照).

(1) 2方向接合マンホール

2方向接合マンホールに関する既往の研究におい て,流入管と流出管の水平面接合角度は,180度が最 も多く,これ以外では,120度,90度等が見られる. 流入管と流出管の鉛直方向の接合状況は,ほとんどが, 管底接合であり,段差接合に関する研究例は少ない. 日本では,管頂接合が多く,流入・流出管が異径の場 合,管底接合とした既往の研究成果をそのまま利用で きない.従来の研究^{2),3)}により,マンホール水位が 管頂付近にあるとスケールの大きな渦の影響で,マン ホールでの損失は非常に大きくなることが知られて いる.

図-2 水平面接合形態

研究者	上 ・ 下 流 管 の 水 平 面 接 合 角 度	上・下流管の 鉛直方向の接合状況	マンホール水深yの 記述の有(範囲)無	研究者	上 • 下流管の 水 平面 接 合 角 度	上 · 下 流 管 の 鉛 直 方 向 の 接 合 状 況	マンホール水深yの 記述の有(範囲)無
Snagsterら (1958,1961)	180度,90度	管底接合	記述なし	松本 (1984)	180度,120度, 90度	段差接合(段差小)	y/D = 1
A ckers (1959)	180度,135度, 128度	管底接合		宇井ら (1987)	180度	管底接合,段差接合	記述なし
A rcherら (1978)	180度,150度, 120度	管底接合	1 <y 8.5<br="" <="" d="">損失係数と水深と の関係有り</y>	Johnstonら (1990)	180度	管底接合	1 <y d<5<br="">損失係数と水深 との関係有り</y>
H are (1983)	90度	管底接合		B o P edersenら (1990)	180度	管中心接合	1 <y d<6<br="">損失係数と水深 との関係なし</y>
Н ow arth ら (1984)	180度	管底接合	記述なし	村上ら (1990)	180度	管底接合	2 <y d<br="">損失係数と水深 との関係なし</y>
L indvall (1984)	180度	管底接合	1 <y 6<br="" <="" d="">損失係数と水深と の関係有り</y>	著者ら (1993)	180度,90度	管底接合,段差接合	3< y /D < 7 損失係数と水深 との関係なし
M arsalek (1984,1985)	180度,90度	管底接合	記述なし	榊原ら (1996)	180度	管底接合	1< y /D < 6 損失係数と水深 との関係なし
注) # けマンホール水源でインバート広面から水面までの野餅 D け際係							

表-2 2方向接合マンホールに関する既往の研究

注) yはマンホール水深でインバート底面から水面までの距離、D は管径 である。 —— は不明

(2) 3 方向接合マンホール

流入管 2本と流出管 1本が接合する 3 方向接合マ ンホールに関する既往の研究²⁴⁾(著者らの研究^{25),} ²⁶⁾を除く)を表-3に示す.横流入管と流出管の水平 面接合角度は,ほとんどが 90 度である.流入・流出 管の鉛直方向の接合状況は,ほとんどが管底接合で, 段差接合は皆無である.マンホール径比 b/D_d(D_d:流 出管内径)や管径比 D_u/D_d, D₁/D_d(D_u:主流方向(直管) の流入管内径, D₁:横流入管内径)を種々変化させて 検討しているのは, Sangster ら⁵⁾だけである.他の 研究では,構造上の設定条件を限定しているため,研 究成果の現場への適用も限られたものとなっている. 表-3の備考欄にも示すように,3方向接合マンホー ルに関する研究では,マンホール内の水深と損失係数 との関係は明らかにされていない.

3. 実験装置及び実験方法

(1)実験装置

著者らが3方向接合マンホールで用いている実験 装置(模型)の概要を図-3に示す.主流方向(直管) の流入管長L_uは2.14m,横流入管長L₁は2.07m,流出 管長L_dは1.04mである.いずれの管も水平に設置さ れており,主流方向の流入管内径D_u及び横流入管内

径 D_1 はともに 5cm, 流出管内径 D_d は 6cm, マンホール 内径 b は 18cm である.マンホール底面形状は日本で 一般的に用いられているものをモデル化しており,管 内径の 1/2 のインバートを設置している.以上より, マンホールや管路に関する構造寸法の比率は, b/ D_u =3.6, D_1/D_u =1.0, D_u/D_d = D_1/D_d =0.833 となる.なお, 本研究で用いたマンホールと管路は,実物の 1/5 の縮 小模型である.流入・流出管がそれぞれ 1 本ずつ接合 する 2 方向接合マンホールを対象とした実験では,主 流方向の流入管あるいは横流入管の流量を 0 ℓ/s と している.

(2) 実験方法

実験方法は以下の通りである. ①2ヶ所の流量調節 バルブにより, 主流方向の流入管流量 Q と横流入管 流量Q₁を所定の流量に設定する(図-3参照). ②流 出管内壁頂部から水面までの距離をマンホール水深 h とし、それを3本の管とマンホールとの接合部及び主 流方向(直管)の流入管から見てマンホール右側壁面 に取り付けた4ヶ所のメジャーにより測定し(図-3参 照),それらの平均値を測定値とする.なお、マンホ ール水深hは,流出管端部の越流水槽内の堰高を変え ることにより変化させている. ③流入・流出管及び横 流入管にそれぞれ3ヶ所ずつ取り付けたマノメーター によって管内の圧力水頭を測定し、これに速度水頭 (V²/2g)を加えたものからエネルギー線を計算する ことにより、(1)式により、マンホール部のエネルギ 一損失水頭ΔEを求める(図-4参照). さらに、(2) 式と(3)式によりエネルギー損失係数 K_{F*}, 圧力損失係 数 K_nを算定する.

$$\Delta E = \left(\frac{v_{*}^{2}}{2g} + h_{*} + z_{*}\right) - \left(\frac{v_{d}^{2}}{2g} + h_{d} + z_{d}\right)$$
(1)

$$K_{E*} = \frac{\Delta E}{V_d^2/_{2g}}$$
(2)

$$K_{P*} = K_{E*} + 1 - \frac{v_*^2}{v_d^2}$$
(3)

ここに、 ΔE はエネルギー損失水頭、 V_* は流入管の平均 流速、 V_a は流出管の平均流速、 K_{E*} はエネルギー損失係 数、 K_{P*} は圧力損失係数である.なお.添え字の*は、 u は主流方向(直管)を、1 は横流入方向(90 度曲げ 接合)を表す.

研究者	マンホール形状と マンホール内径(b)	管路形状と 上流管内径(Du) 横流入管内径(D1) 下流管内径(Dd)	マンホール径比 $\left(\frac{b}{Dd}\right)$	流入管とi の比率 (Du Dd	充出管 $\left(\frac{D1}{Dd}\right)$	管路の水平面 接合形態 図-1中の タイプ	管路の 鉛直方向の 接合形態	マンホール 底面に インバート の有・無	備考
Sangsterら (1958, 1961)	正方形 152,159,178, 254mm 円形 175,251mm	円形 Du=76, 95, 121, 145mm D1=76, 95, 121, 145mm D1=76, 95, 121, 145mm	正方形 1.00,1.05,1.09, 1.22,1.32,1.47, 1.75,1.87,2.10 円形 1.20,1.73,2.08	0.52, 0.63, 0.80, 0.83	0.65, 0.79, 0.83, 1.00, 1.20	(a), (b)	管底接合	無	
Lindvall (1984)	円形 245, 374, 590mm	円形 Du=Dd=144mm D1=56, 99, 144mm	1.7, 2.6,4.1	1.0	0.389, 0.688, 1.00,	(a)	管中心接合	有(2種)	いずれも定常流 マンホール水深と 損牛係数との関係
Marsalek (1985)	正方形 344mm 円形 344mm	円形 Du=Dd=75,152mm D1=75,152mm	正方形 2.26,4.59 円形 2.26,4.59	1.0	0. 5, 1. 0	(a), (b)	管底接合	無 と 有 (2種)	の記述なし
Johnston (1990)	正方形 160mm	円形 Du=45mm D1=64mm Dd=70mm	2. 29	0.64	0.914	(a)	管底接合	有(1種))

表-3 3方向接合マンホールに関する既往の研究

4. 雨水管の摩擦損失とマンホールの局所損失 の比較

(1) 2方向接合マンホールでの損失

図-5に2方向接合マンホール(マンホール内径 b=18cm,流入管内径D_a=流出管内径D_a=5cm,段差S=0cm) でのエネルギー損失係数の実験結果の一例を示す.図 の横軸hは,流入管内壁頂部から水面までの距離で, マンホール内で水面が管頂付近にあると,スケールの 大きな渦が発生するため(図-6参照),損失が非常 に大きくなる.マンホール内で水面が管頂付近にある 状態というのは,まさに洪水が発生している時であり, 水面が地表面に到達しない場合でも,この損失が一時 的に上流側の水面上昇をもたらすと考えられる.

図-7に2方向接合マンホールでのエネルギー損失 係数Kと流入・流出管の段差比S/D_u(Sは段差)との 関係を示す.各段差におけるエネルギー損失係数K の値は、マンホール内の水深比(h/D_u)を2以上と した損失係数の平均値とした.管径 D=25cm,管長 L=30m(全国平均値)の雨水管の摩擦損失を図-8に示 す.1本の管路とそれに接合するマンホール1個のエ ネルギー損失係数の合計は、K+K_p(Kはマンホールの エネルギー損失係数,K_pは雨水管の摩擦損失係数)と なる.管路の粗度係数nを0.010とすると、K_p=2.37 (K_p=f・L/D,f:摩擦損失係数)と算定される.K の値に比べてK_pが無視できれば、雨水管の設計や内 水氾濫解析にはマンホールの局所損失を考慮しなく てよいが、無視できる場合と無視できない場合がある.

図-5 2方向接合マンホールのエネルギー損失係数 K と 水深比 h / D_u との関係

図-6 マンホール内のスケールの大きな渦

図-7に示すように、直管流れで段差比 S/D_uが0の 場合、マンホールのエネルギー損失係数 K は、0.2~ 0.4 程度であり、管路の摩擦損失係数 K_pに比べて無視 し得るが、段差比が 1.5 を超えると、マンホールのエ ネルギー損失係数 K は 2 付近の値となる. この値は、 雨水管の摩擦損係数 K_pとほぼ同じ値であるため、マ ンホール1 個での損失が長さ 30m の管路1本分の損 失に相当することがわかる.また、流向が 90 度変化 する流れでは、段差比 S/D_uが0でも、損失係数はか なり大きくなる.マンホール径比 b/D_u によっては、 段差比が 0.5 付近で、K が 3 程度の値をとることもあ り、この値は管路の摩擦損失を超える大きな値である.

図-7 段差比 S/D_nとエネルギー損失係数 K との関係

(2)3方向接合マンホールでの損失

図-10~12は、それぞれQ₁/Q₄=0,0.2,0.5(Q₁は横 流入管の流量, Q₄は流出管の流量)の主流方向の圧力 損失係数 K_{nu}と水深比 h/D_uとの関係を表している.な お、この実験結果は、流入管2本と流出管の内径をい ずれも5cm としたものである. 今回設定した7種の 流量比 (Q₁/Q₄=0, 0.2, 0.33, 0.5, 0.67, 0.8, 1.0) において、マンホール内の水深比 h/D₂を2以上とし た水深に関して,損失係数の平均値を算定し,主流方 向の圧力損失係数 Km 及び横流入方向の圧力損失係数 K_{n1}と流量比 Q₁/Q_dとの関係を示したのが図-13 である. 図-13 に示すように、Q₁/Q_d=0の場合、実験誤差は多 少あるものの、横流入管からの流入水がないため、段 差の有無に関わらず,主流方向と横流入方向の損失係 数は変わらない.また,図-10や図-11に示すように, マンホール内の水深比 h/ D_uが 0.2 から 0.6 付近のと き圧力損失係数が増大しているのは,従来の研究^{2),3)} でも報告されているように,マンホール内で発生する スケールの大きな渦の影響である.h/ D_aが1付近に なるとこの渦は消滅し、さらに h/ D_uを大きくすると 損失係数の変動が多少見られるものの一定値に近づ く. 図-13 に示すように、Q₁/Q₄=0.20 と 0.33 では、 段差がある方が主流方向での圧力損失は大きくなっ ている. 段差 S=0 cm (Type A) の場合, 主流方向の 流入水と横流入方向からの流入水は衝突するが,横流 入管からの流入速度が小さいため,エネルギー損失は 比較的小さいと思われる. 一方, 段差 S=5 cm (Type C) では横流入管が主流方向の流入管よりも5cm 高いた め, 主流方向の流入管からの流入水は, 横流入管から の流入水とは直接衝突することがない. 横流入管から の流入水は、マンホール側壁へ直接衝突した後、スケ ールの大きな渦を形成することとなり,この渦が流入 管からの流入水に影響を及ぼしていると考えられる.

> b=18cm 主流方向(直管)の段差:S₁ h 横流入方向の段差:S₁ 正面図 S_i=0cm **Type A** S_u=0cm Qh S_=0cm 正面図 正面図 . S_I=2.5cm S_=5cn Туре В Type D S =0cm S.=5cm S=5cn 正面図 Type C S_u=0cm 正面図 Type E S_=5cm

図-9 流入管と流出管の段差の設定条件(5種類)

図-10 主流方向の圧力損失係数 K_{pu}と水深比 h/D_u

Q₁/Q₄=0.33 では, 段差の有無による損失係数の差は h/D₀=3.5 のとき最小で 0.1, h/ D₀=7 のとき最大で 0.2 程度となった.しかし、横流入量の比率が大きい Q₁/Q₄=0.50 と 0.67 では,段差の有無によらず損失係 数にほとんど差は見られない. その理由は横流入量の 割合が増加するにつれて,主流方向の流入管からの流 入速度は小さくなり,逆に横流入管からの流入速度は 大きくなるため、段差が無い場合でもインバートの効 果は小さくなり,段差がある場合とマンホール内の渦 構造が類似したものになっているのではないかと推 察される. Q₁/Q₁=0.8 と1では、マンホール内の流れ の構造は、横流入管からの流入水によって支配される. 段差が無い場合は、横流入管からの流入水の上半分と インバートに流入する一部の流れがマンホール側壁 に衝突する. 段差がある場合は, 横流入管からの流入 水がすべて直進しマンホール側壁に衝突するため,段 差がある方がより流出管から流出しにくい状態にな っていると思われる.この影響で,主流方向の流入管 の動水勾配線を鉛直向きに押し上げた結果、Q₁/Q=1 では圧力損失係数は0.2程度増加している.

5. おわりに

本論文では,既往の研究成果を基に,雨水管の摩擦 損失に匹敵するほどマンホールの局所損失が増大す ることがあり,決してこれを無視することができない ことを示した.内水氾濫解析では,マンホールでの局 所損失係数の与え方によっては,特に浸水初期に浸水 発生箇所や浸水深等に大きな差が生じると考えられ る.マンホールでの局所損失が大きくなる条件を列挙 すると以下のようになる.

(1) マンホール内の水面が管頂付近にある場合

洪水が発生している時であり,水面が地表面に到達 しない場合でも,この損失が一時的に上流側の水面上 昇をもたらすと考えられる.

(2)流入管と流出管の水平面接合角度が小さい場合(3)流入管と流出管の段差が大きい場合

一般的に段差が大きくなるのは、地形勾配が急なと ころに管路を敷設する場合である.

(4) 流入管の本数が多くなる場合

著者らは、2方向接合マンホールのエネルギー損失 係数の算定式を既に考案しており²³、今後は、3方 向接合及び4方向接合マンホールのエネルギー損失 に関する実験的検討を行い、損失係数の算定式を開発 していきたい.

参考文献

1) 下水道施設計画・設計指針と解説前編,第2章管路施設, 第7節マンホール,日本下水道協会,pp.164-165,1994. 2) Howarth, D. A. and Saul, A. J. : Energy Loss Coefficients at Manholes, Proc. 3rd Int. Conf. on Urban Storm Drainage, Chalmers Univ. of Technology, Goteborg, Sweden, pp.127-136, 1984.

3)Lindvall, G. : Head Losses at Surcharged Manholes with a Main Pipe and a 90 Lateral, Proc. 3rd Int. Conf. on Urban Storm Drainage, Chalmers Univ. of Technology, Goteborg, Sweden, pp.137-146, 1984.

4) 流出解析モデル利活用マニュアル,2006 年 3 月,(財) 下 水道新技術推進機構

5)Sangster, W. M., Wood, H, W., Smerdon, E. T., and Bossy, H. G.: Pressure Changes at Open Junctions in Conduits, Trans. ASCE, Vol. 126, pp. 364-396, 1961.

6)Ackers, P. : An Investigation of Head Losses at Sewer Manholes, Civ. Eng. and Publ. Works. Rev. Vol. 54, No. 637, pp. 882-884 and 1033-1036, 1959.

7)Archer, B., Bettes, F., and Colyer, P.J. : Head Losses and Air Entrainment at Surcharged Manhole, Rept. No. IT185, Hydraulics Research Sstation, Wallingford, England, 1978.

8)Hare, C. M. : Magnitude of Hydraulic Losses at Junctions in Piped Drainage Systems, Civil Engnerring Transactions, Instituion of Civil Engineers, pp. 71-77, 1983.

9) Marsalek, J. : Head Losses at Sewer Junction Manholes, J. Hydraul. Eng. Am. Soc. Civ. Eng. Vol. 110(8), pp. 1150-1154 , 1984. 10)Marsalek, J. :Head Losses at Selected Sewer Manholes, Special Report NO.52, Am. Public Works Association, Chicago, 1985.

11) 松本 良一:マンホールの損失水頭を考慮した下水管渠 設計法について,建設技術研究所報,1984.

12) 宇井 正和,安川 浩:管路接続用チャンバーによるエネ ルギー損失, 第31回水理講演会, 1987.

13) Johnston, A. J., and Volker, R.E. : Head Losses at Junction Boxes, J.Hydraul. Eng.Am.Soc.Civ. Eng. Vol.116, No.3, pp.326-341, 1990.

14) Bo Pedersen, F., and Mark, O.: Head Losses in Storm Sewer Manholes: Submerged Jet Theory, J. Hydraul. Div. Am. Soc. Civ. Eng. Vol. 116, No. 11, pp. 1317–1328, 1990. 15) 村上孝雄, 櫻井真一:下水道マンホールの水理に関する 検討, 重点領域研究「自然災害」研究報告書 01601011,都 市域における異常出水の予測とその流出抑制工法に関する 研究, 1990.

16)Kusuda, T., Arao, S., and Moriyama, K., : Energy Losses at Junctions and Transient Flow in Sewer Networks, Proc. 6th Int. Conf. Urban Storm Drainage, Vol.1, pp.122-127, 1993.

17) 荒尾慎司, 楠田哲也:2方向接合マンホール部のエネ ルギー損失特性-レビューと課題-,下水道協会誌, Vol.33, No.396, pp.75-86, 1996.

18)Arao, S. and Kusuda, T. : Energy Losses at Circular Drop Manholes, Proceedings of the 7th ICUSD, Hanover Germany, Vol. 1, pp.85-90, 1996.

19) 荒尾慎司, 楠田哲也:2方向接合円形落差マンホール部 のエネルギー損失特性,下水道協会誌論文集(増刊号), Vol.34, No.419, pp.14-28, 1997.

20) 荒尾慎司, 楠田哲也:上・下流管の水平面接合角度の違いが2方向接合円形落差マンホール部のエネルギー損失に 及ぼす影響,環境工学研究論文集, Vol. 35, pp. 467-475, 1998.

21)Yen, B. C. : Hydraulics of Sewers, Advances in Hydrosciences Vol. 14, pp. 1-122. Academic Press, Orland, Florida, 1986.

22)Larry, W. Mays : STORMWATER COLLECTION SYSTEMS DESIGHN HANDBOOK, McGraw-Hill, pp. 6.65-6.84, 2001.

23) 荒尾慎司,楠田哲也:管水路流れにおける2方向接合円形落差マンホール部の形状損失の定式化,土木学会論文集G, Vol. 62, No. 1.

24) 荒尾 慎司, 楠田 哲也:3方向接合マンホール部のエ ネルギー損失特性-レビューと課題-,下水道協会誌, Vol.33, No.397, pp.67-75, 1996.

25) 阿部 正毅,小橋川 洋平,田中 敬一:3 方向接合円 形マンホールの損失特性に関する実験的研究,-下流管径の 違いと段差の影響-,平成 15 年度九州共立大学工学部土木 工学科卒業研究概要集, pp. 81-86, 2003.

26) 荒尾 慎司, 楠田 哲也:3 方向接合マンホールの損失 特性に関する実験的研究, 環境工学研究論文集, Vol. 40, pp. 421-429, 2003.