

所属名:山口大学大学院 理工学研究科(工学系) 発表者:羽田野 袈裟義

1. 背景と目的

近年,地球温暖化による海面上昇が進行し,これに伴って高潮災害の危険度上昇が指摘されている. 一方,公共事業費の削減によりコスト縮減が求められている.羽田野らは透過性の平板式消波構造物¹⁾ を考案し,その性能をテストしている.本研究では,この消波構造物について,波の周期と波高を変 化させた一連の実験を行ない,波の透過率・反射率・エネルギー損失率を調べ,消波効果を検討した.

2. 本提案の消波構造物の特徴

消波構造物は図-1 のような形式であり、それ には次のような特徴をもつ.

- 前面積が小さく波の水平力を受けにくく、波の水平力による転倒の心配がなく、さらに軽量なため、基礎地盤の支持力の点でも有利である。
- 平板表面において水の水平運動を拘束しな
 いため消波構造物を通して水が自由に出入
 りし、構内の水質問題が生じにくい。
- ・構造体の体積が小さく材料節減の効果があ る.

3. 実験概要

3-1 実験装置と実験模型

実験は、図-2 に示す全長 32m,水深 0.6m,幅 0.6m の二次元造波水槽内の中央に水槽の全幅にわた って構造物を設置し、水槽の左端の造波装置を用いて波を発生させた.図の右端には消波ブロックが 設置しているが、実験では波が左端から伝播して一部は反射し、一部は構造物を透過し、後方に伝播 したのち、消波ブロックに当たって反射する.

消波構造物高 hh を表-1 に示すように 50,52,54,56,58cm と変化させ,合計 5 ケースの実験を行った.全ての条件において水深 h は 0.6m に固定した.

3-2 実験と解析の手順

- ① 波高計のキャリブレーションを行う.
- ② 図-2の消波構造物を水槽の中央に設置し、その前後各2ヶ所に波高計を配置する.
- ③ 造波板を始動し,波が4つ目の波高計を通過するのを確認してから,50Hz(0.02sec)間隔で2048 個の水位データを約40秒間取得する.これにより、水槽末端からの反射波を防いだ.精度を高め るため3回測定し、平均を算出した.
- ④ 分離推定法²⁾を用いて,波高データを入射波,反射波,透過波の成分に分解し,透過波の波高と 入射波の波高の比から透過率 Kt を算出した.

3-3 波の条件

表-2に示すように波の周期と波高の異なる4~6種類

の波を造波した.入射波の波形勾配H/Lは、実 海域の想定をして、0.01、0.03、0.05、0.07と変化 させた.表中で斜線を引いた欄は、造波装置の都 合で造波できない条件である.

表-2 波の条件

13

11

9

7

5

Run	波長L	周期T		W/I			
	(m)	(s)	H/L=0.01	H/L=0.03	H/L=0.05	H/L=0.07	W/L
1	2.80	1.43	\square	8.40	/	/	0.114
2	2.18	1.22	2.18	6.54	10.90	/	0.147
3	1.54	1.00	1.54	4.62	7.70	10.78	0.208
4	0.92	0.77	0.92	2.76	4.60	6.44	0.348
5	0.77	0.70	0.77	2.31	3.85	5.39	0.416
6	0.50	0.57	\backslash	1.50	2.50	3.50	0.640

4. 実験結果

4-1 Kt と Kloss, Kr の関係

問題を単純化して、一定水深 h に置かれた透過性の構造物に波が入射する場合を考える. 輸送エネ ルギーの保存則 3)から式(1)を得る.

 $(EC_g)_I = (EC_g)_R + (EC_g)_T + \dot{W}_{loss}$ (1)

ここで, $E(=
hog H^2/8)$: 波のエネルギー, C_g : 群速度, \dot{W}_{loss} : 構造物による単位時間当たりエネル ギー損失量で、添え字は、I:入射波、R:反射波、T:透過波に関する量を示す.

入射波,反射波,透過波の群速度 C_{g} は等しいことから式(1)は次式のように書き換えられる.

$$H_{I}^{2} = H_{R}^{2} + H_{T}^{2} + \left(\frac{\dot{W}_{loss}}{\frac{1}{8}\rho g C_{g}}\right)$$
(2)

と書ける.式(2)を入射波高に対する比で表したものが式(3)である.

$$1 = \left(\frac{H_R}{H_T}\right)^2 + \left(\frac{H_R}{H_I}\right)^2 + \left(\frac{\dot{W}_{loss}}{\frac{1}{8}\rho g H_I^2 C_g}\right) = K_R^2 + K_T^2 + K_{loss}$$
(3)

式(3)は透過率 Kt, 反射率 Kr, エネルギー損失率 Kloss の関係³⁾を示す.この式より,実験で得た Kt, Kr, Kloss の関係を示す.図-3 は, H/L=0.05 の Kt と Kloss の関係を,そして図-4 は H/L=0.05 の Kt と Kloss の関係を示す.図-3 から Kt が低減していくにつれ, Kloss が増加していくことがわかる.それに対して図-4 より Kt の低減が, Kr には,ほぼ影響しないことわかる.これにより,透過率 Kt の低減の要因は,エネルギー損失率 Kloss であることが判明できる.一般的に,エネルギー損失の主な要因として, 砕波・内部粘性・逆風などが挙げられるが,本実験では,内部粘性や逆風の影響は少なく,エネルギー損失の主体は砕波であった.

図-3 Kt と Kloss の関係

図-4 Kt と Kr の関係

4-2 透過率 Kt の検討

本構造物の透過率 Kt を支配する主要なパラメータとして, 天端水深 hu, 波高 H, 波形勾配 H/L, 構造物幅W, 波長 L が考えられる.特に, 重要な無次元パラメータとして, 波形勾配 H/L, 天端水深・ 波高比 hu/H, 天端水深・波長比 hu/L, 構造物幅・波長比 W/L, を考えてデータ整理した.これら4つ の無次元パラメータのうち, hu/H, hu/L は種々の値で変化するため, これらを横軸にし, W/L, H/L をパラメータとして図示する.

4-2-1 Kt と hu/H の関係

KtとKloss・Krの関係から本方式の波高低減は、平板上の砕波が主要と考えてよい.hu/Hは砕波のパラメータとして考えた.図-5は、種々のH/Lに対して、Ktとhu/Hの関係をW/Lごとに記号を区別

している. どの図でも, Kt は hu/H の増加より, 一旦減少したのち増加する傾向がある. hu/H が極端 に小さい範囲で Kt が比較的大きな値を示す原因として, hu/H が小さいと平板が水面より上にくるため, 消波構造物の機能を果たせない状況があると考えられる. 波形勾配 H/L と W/L の効果として, H/L が 小さい程, hu/H の広い範囲で消波効果が大きいことや W/L が大きい程, 消波効果が大きい性質がある ことがわかる.

4-2-2 Kt と hu/L の関係

Kt と hu/L の関係を図-6 に示す.図-6 と同様に種々の波形勾配に対して,W/L ごとに記号を変えて 表示している.図より,Kt と hu/L の関係は,図-6 の Kt~hu/H の関係と類似しており,Kt は hu/L の 増加と共に,一旦減少したのち増加する.理由として,図-6 と同様と考えてよく,H/L,W/L の効果 としても同様である.

以上をまとめると、図-5、6から透過率 Kt を支配する無次元パラメータとして hu/H, hu/L, W/L, H/L が適当であることがわかる.

図-6 Kt と hu/L の関係

4-3 Kt~W/L の関係と実海域の想定

図-7は、hu=2cmのときのKtとW/Lの関係を示す.全ての波形勾配H/Lにおいて、波長Lが長い程, 消波効果が小さい.これは、波長が長い波では波の位相の一部しかカバーできないためと考えられる. W/L=0.3~0.4の範囲で消波効果が高いことがわかる.全ての波形勾配で、Kt が最小値をとった後は、 増加し、その後は一定値になる.波形勾配H/Lが低いほど、最小値やその後の一定値がW/Lの狭い範 囲になり、波形勾配H/Lが低いほど、長波に対応できるとわかる.

次に,実海域を想定する場合には,周期Tと水深hの縮尺の関係として式(4)に示すフルード相似則⁴⁾を用いた.式中の添え字pは原型,mは模型を示す.

$$\frac{T_p}{T_m} = \left(\frac{h_p}{h_m}\right)^{\frac{1}{2}} \tag{4}$$

表−2の波の条件を実海域水深 h_p=10m に想定し,構造物幅 W=10m の場合を評価した. **表−3**と図−7 から,周期 T=3~4s の場合では,実海域でも消波効果が期待できることがわかる.

RUN	T(s)	L(m)	W/L
1	4.98	35.39	0.283
2	4.08	25.61	0.390
3	3.14	15.39	0.650
4	2.86	12.77	0.783
5	2.33	8.48	1.180

表-3 実海域(h=10m)での想定

5. 結語

以上,本報告では平板式消波構造物の消波効果を検討するために,様々な波形勾配に対して天端水深 /波高比,天端水深/波長比,構造物幅/波長比を種々変化させて透過率 Kt を求める水理実験を行った 結果を報告した.主要な結果は以下のようである.

- (1) 透過率 Kt の低減要因は反射率 Kr ではなく砕波によるエネルギー損失率 Kloss である.
- (2) 本方式の消波効果を支配するパラメータとして H/L, hu/H, hu/L, W/L が適切である.
- (3) H/L が小さい程, W/L が大きい程, 消波効果が高い.
- (4) Kt~hu/H および Kt~hu/L の関係では, Kt は hu/H および hu/L の増加より,一旦減少したのち増 加する傾向がある.
- (5) W/L=0.3~0.4 の範囲で消波効果が高い.
- (6) 実海域 h=10m, W=10m の場合は、周期 T=3s~4s の範囲で消波効果が期待できる.

参考文献

1) 国立大学法人山口大学: 消波構造物, 特開2007-9404, 2007.

2) 合田ら: 不規則波実験における入・反射波の分離推定法, 港湾技研資料, No. 248, pp. 1-24, 1976.

3) 服部昌太郎:海岸工学,コロナ社, pp. 57-188, 1995.

4) 岩垣雄一·椹木亨:海岸工学,共立出版, p. 400, 1979.