

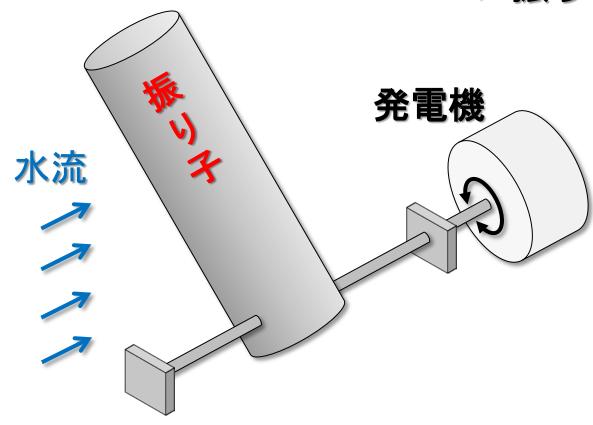
ハイドロヴィーナス技術による 治水・利水・海洋のDX・GX

岡山大学 教授 比江島 慎二 (株)ハイドロヴィーナス 代表取締役 上田 剛慈

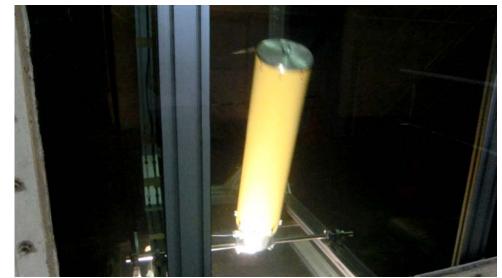
土木・建築構造物の空力振動(流体励起振動)

巨大構造物を破壊するほど強大な振動のパワー

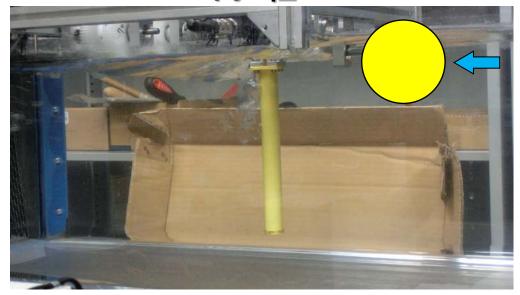
ļ


風や水流から効率的にエネルギーを取り出せないか?

Hydro-VENUS



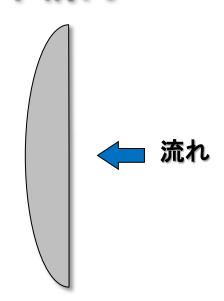
➤振り子の**流体励起振動**で発電


特許第5303686号 発電機

様々な形状の振り子

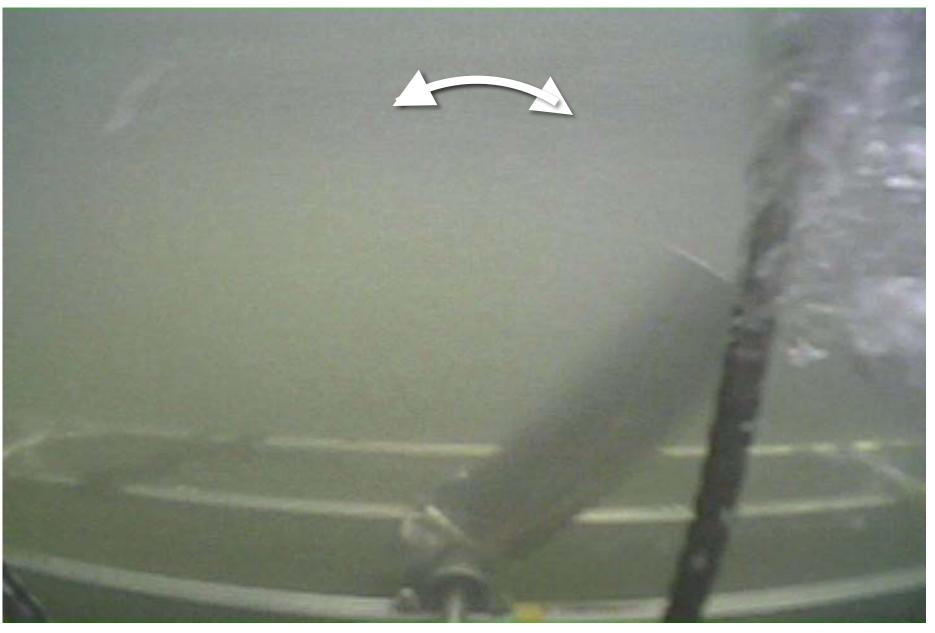
円 柱 半円柱

三角柱


T型柱

半楕円断面の振り子による振動と回転

半楕円


- ▶ 流体励起振動を原理とした回転
- ▶ 翼型プロペラに匹敵する性能

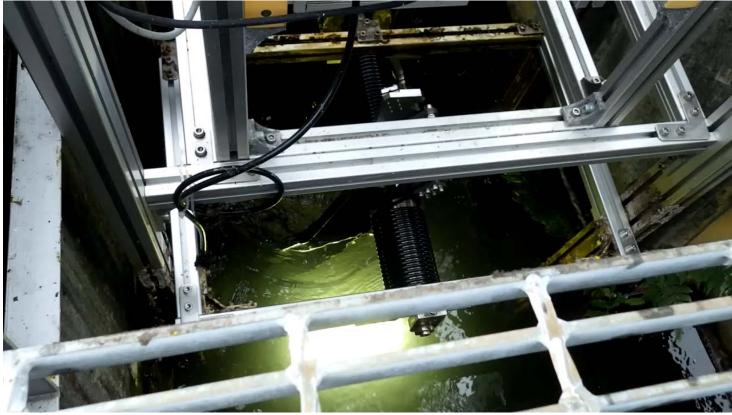
Hydro-VENUSは正逆両方向に回転できる

強風による観覧車のゴンドラ回転

強風で回転する観覧車の風洞実験

振り子式Hydro-VENUSによる潮流発電

海上曳航実験



下水処理場での実証試験

水管理のスマート化を実現 ハイドロヴィーナス「治水DXシステム」

当社概要

ユニークな水力発電技術でDXやGXに取り組む岡山大学発ベンチャー

会社名: 株式会社ハイドロヴィーナス

代表者 : 代表取締役 上田 剛慈

設立 : 2015年1月

資本金 : 32百万円 (J-KISS含む)

所在地 : 岡山県岡山市北区津島中3-1-1

J-Startup WEST

ハイドロヴィーナスは J-Startup WEST選定企業です

岡山から世界へ

比江島慎二

設立時出資者

坂手建設株式会社

株式会社アクシア

株式会社エナジーフロント

VISION

水路網や海域にエネルギー・通信プラットフォームを形成する

山奥、河川、海洋などの電気が届かない場所で発電するための オフグリッド・独立電源を供給し、デジタル化、インテリジェンス化を推進する

ニーズ/課題 ICTでは電源が課題になりやすい

広く使われているソーラー/風力発電では課題が山積

課題

- ①時間帯、天候などで発電効率が左右される
- ②設置に適さない場所も多い
- ③風力はメンテナンスコストが高い

たとえば山間部や海のデータは取りにくい

より効果的で使い勝手の良いオフグリッドエネルギーが必要

ソリューション

どこでも"泳ぐ"発電機&流速計

絡まらない・設置工事不要で 低コスト、低メンテナンス

技術について

【世界唯一】 【低コスト】 【高付加価値】

岡山大学発「流体励起振動」技術で流れがあればどこでも動く **【メンテナンスフリー**】低メンテナンス且つゴミが絡まりづらい 係留のみで大掛かりな設置工事は不要 発電と流速計測を実現

水力学的 渦エネルギー活用システム Hydrokinetic Vortex Energy Utilization System

Hydro-VENUS

どのサイズでも実現可能

		W
mW		

場所

下水 山間部小川

河川

一級河川 潮流

kW

潮流・海流

流速

0.3 m/s

0.6 m/s

用水路

2.5m/s

2.5m/s

サイズ 台数 0.2m 1基 1m 1基 4m 1基 20m

5基

応用例

センサー電源

イルミネーション 橋照明 充電ステーション 海洋データセンタ

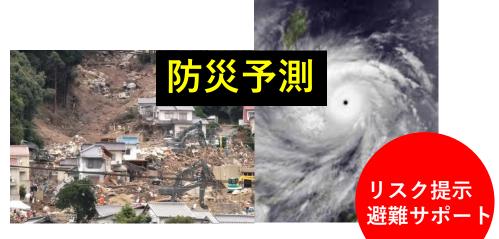
基幹電源

センサ通信

イルミネーション

照明

EV充電ステーション


データセンタ

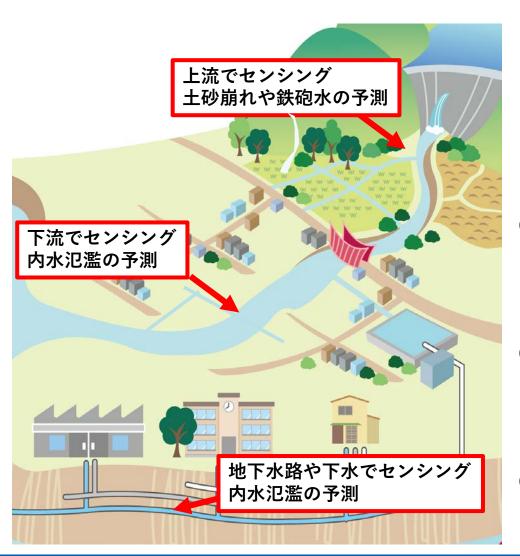
ソリューション

治水DX

データからのAI学習を実現するニーズに応える 異変やインフラの老朽化にも早期対応

前兆から 予測したい

電線・通信線が ない場所が鍵

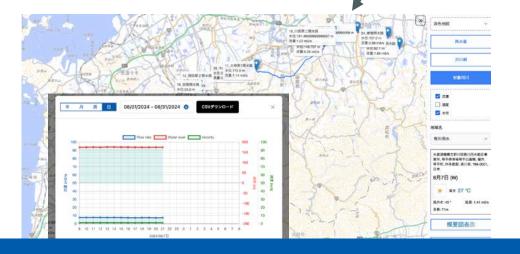

下水

山間部河川

自己発電センサ通信網× AI解析

- ① 水の流れがあるあらゆる場所(電線・ 通信線のない山間部や下水を含む)で センサネットワークを配備
- ② クラウドにデータを集積と天候情報、 水門制御情報等とともにAIで解析、地 域固有の学習モデルを構築
- ③ リスク予測、治水や灌漑のナビゲーションの提供

システム概要


無線通信(今回はLPWA基地局も実装)

現地設置システム (係留のみで大掛かりな工事不要)

PC・スマホで閲覧や操作

既存の流速計・流量計における課題

安価だが(絡まるため) 常設できない (要電池)

常設できるが高価(要電線・通信線)

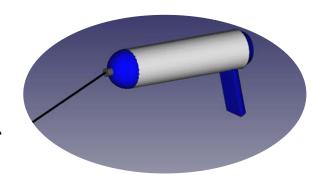
ハイドロヴィーナスならば安価に常設可能。しかも電源不要.

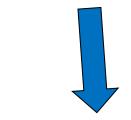

ソリューション - リモート監視や制御を可能にするクラウドシステム -

治水DX AIによる予測ソフトウェア

水流発電デバイスを多拠点に設置し 流速・流量データを収集し解析することで 「大規模氾濫予測」「農業用水制御」 「内水氾濫リスクの把握や最小化」など 全体最適化の視点での管理やリスク対策が可能

※リアルタイム観測イメージ



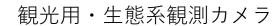

川だけでなく海でも展開

通信基地・スマートブイ

発電・給電基地

潮流分布・酸素濃度分布・赤潮予測

☑装置ビジネス ☑通信ビジネス ☑データビジネス 図電力ビジネス



海中ドローン

漁業応用(給餌機駆動,定置網観察)

実証実績

